
22-S3-C3410X-062001

USER'S MANUAL

S3C3410X
16-Bit CMOS

Microcontrollers
Revision 2

NOTIFICATION OF REVISIONS

ORIGINATOR: Samsung Electronics, SOC Development Group, Ki-Heung, South Korea

PRODUCT NAME: S3C3410X RISC Microcontroller

DOCUMENT NAME: S3C3410X User's Manual, Revision 2

DOCUMENT NUMBER: 22-S3-C3410X-06-2001

EFFECTIVE DATE: June, 2001

SUMMARY: As a result of additional product testing and evaluation, to correct the errata and
to add more detailed explanations, some specifications published in the
S3C3410X User's Manual, Revision 1, have been changed. These changes for
S3C3410X microcontroller, which are described in detail in the Revision
Descriptions section below, are related to the followings:

— Chapter 1. Pin Descriptions
— Chapter 4. EXTCONx, EXTPORT, EXTDATx and Timing Diagrams
— Chapter 5. Cache Disable Operation

— Chapter 7. Port 7 and Port 9 Control Registers
— Chapter 11. Interrupt Priority Register (INTPRIx)
— Chapter 14. Multi-Master IIC-Bus Status Register (IICSTAT)

DIRECTIONS: Please note the changes in your copy (copies) of the S3C3410X User's Manual,
Revision 1. Or, simply attach the Revision Descriptions of the next page to
S3C3410X User's Manual, Revision 1.

REVISION HISTORY

Revision Date Remark

0 – There is no preliminary spec.

1 August, 2000 Reviewed by Gwang-Su Han.

2 June, 2001 Reviewed by Gwang-Su Han.

REVISION DESCRIPTIONS

1. PIN DESCRIPTIONS:

1) Pin descriptions about A[23:0], D[15:0], nCS[7:0] nECS[1:0], nWAIT and nWREXP, are changed and the
content of RP[7:0] are added.

S3C3410X User's Manual reference: Table 1-3, page 1-11

2) The following errata should be corrected:
RXD → URXD, TXD → UTXD, SIOCK[1:0] → SIOCLK[1:0], EXTAI0 → EXTAL0, SYSCFG0 → SYSCFG,
MEMCONx → BANKCONx, EDVCONx → EXTCONx, EXTDATAx → EXTDATx , UTXHW → UTXH_W,
URXHW → URXH_W, IICADD(0xe002) → IICADD(0xe003), IICDS(0xe003) → IICDS(0xe002)

S3C3410X User's Manual reference: Table 1-3, page 1-11

2. EXTCONX, EXTPORT, EXTDATX AND TIMING DIAGRAMS:

1) Contents about EXTCONx, EXTPORT, and EXTDATx are changed.

S3C3410X User's Manual reference: page 4-14 and page 4-15

2) "Multiplexed Address Mode Timing Diagrams", "nCS Timing Diagram with nWAIT", and “ nECS Timing
Diagram with nWAIT" are added.

3) External Device Interface Diagram is changed.

 S3C3410X User's Manual reference: Figure 4-21, page 4-30

3. CACHE DISABLE OPERATION:

1) More detailed explanations about the internal SRAM address (when the cache is disabled) is added.

S3C3410X User's Manual reference: page 5-4

4. PORT 7 AND PORT 9 CONTROL REGISTERS:

1) The contents of P7BR(0xB00B) is added in PORT 7 and the pin descriptions of P7.x are changed to P7.x
(RPx).

S3C3410X User's Manual reference: page 7-20

2) More detailed explanations about P9.0(LP) and P9.1(DCLK) are added.

S3C3410X User's Manual reference: page 7-25

(Continued to the next page)

5. INTERRUPT PRIORITY REGISTER:

1) The contents about the INTPRIx are changed .

S3C3410X User's Manual reference: page 11-10

6. MULTI-MASTER IIC-BUS STATUS REGISTER:

1) The contents of INTFLAG is added to IICSTAT register.

S3C3410X User's Manual reference: page 14-7

2) The prescaler value (4 × (prescaler value + 1)) is changed to (16 × (prescaler value + 1)) in IICPS.

S3C3410X Userís Manual reference: page 14-9

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

INTRODUCTION

Samsung's S3C3410X 16/32-bit RISC microcontroller is a cost-effective and high-performance microcontroller
solution for PDA and general purpose application.

An outstanding feature of the S3C3410X is its CPU core, a 16/32-bit RISC processor(ARM7TDMI) designed by
Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general purpose, microprocessor macro-
cell, which was developed for the use in application-specific and customer-specific integrated circuits. Its simple,
elegant, and fully static design is particularly suitable for cost-sensitive and power-sensitive application.

The S3C3410X has been developed by using the ARM7TDMI core, CMOS standard cell, and a data path
compiler. Most of the on-chip function blocks have been designed using an HDL synthesizer. The S3C3410X has
been fully verified in SAMSUNG ASIC test environment including the internal Qualification Assurance Process.

By providing a complete set of common system peripherals, the S3C3410X can minimize the overall system cost
and eliminates the need to configure additional components, externally.

The integrated on-chip functions which are described in this document include:

• Integrated external memory controller (ROM/SRAM and FP/EDO DRAM/SDRAM controller)

• 2-channel general DMA controller

• Internal 4K-byte memory can be configured as (4KB Cache only), (2KB Cache and 2KB SRAM), or (4KB
SRAM only).

• 1-channel UART with IrDA 1.0, 1-channel IIC, and 2-channel SIO(Synchronous serial IO)

• 3-channel 16-bit timers and 2-channel 8-bit timers

• Real time clock with calendar function.

• Crystal/Ceramic oscillator or external clock can be used as the clock source.

• Power control: Normal, Idle, and Stop mode

• 1-channel 8-bit basic timer and 3-bit watch-dog timer

• Interrupt controller: 35 interrupt sources, interrupt priority control logic and interrupt vector generation by H/W.

• 8-channel 10-bit ADC

• 10 programmable I/O port group (Total 74 I/O ports including the multiplexed I/O)

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-2

FEATURES

Architecture

• Integrated system for hand-held and general
embedded application.

• Fully 16/32-bit RISC architecture(32-bit ARM
instruction as well as 16-bit Thumb instruction).

• ARM7TDMI CPU core, supporting the efficient
and powerful instruction set.

• On-chip ICEBreakerTM debug support by JTAG-
based solution.

• 4KB Unified Cache (Instruction/Data Cache
Memory)

System Manager

• Address space: 16Mbytes per each bank
(Total 128Mbyte)

• Support 8-bit/16-bit data bus width for external
memory/device access.

• The bank can support ROM/SRAM/Flash,
External I/O device or FP/EDO/SDRAM.

• Among total 8 memory banks, bank0,1,2,3,4
and 5 can be mapped to ROM/SRAM/Flash,
while bank6 and 7 can be mapped to
FP/EDO/SDRAM as well as ROM/SRAM/Flash.

• Fully programmable access cycle for all memory
banks

• Supports self-refresh/auto-refresh mode to
retain the data in the DRAM.

• Two external I/O banks can be mapped to the
SFR (Special Function Register) region.

Unified(Instruction/Data) Cache Memory &
Internal SRAM

• Two-way set associative 4KB cache.

• Pseudo LRU (Least Recently Used)
replacement policy.

• Four depth write buffer.

• Programmable configuration of
(4KB cache, only), (2KB cache and 2KB SRAM),
or (4KB SRAM, only).

DMA Controller

• Two-channel general purposed DMA(Direct
Memory Access) controller.

• The data transfer of Memory-to-memory, serial
port-to-memory, memory-to-serial port, memory-
to-SFR(Special Function Register), SFR-to-
memory, internal SRAM-to-memory, and
memory-to-internal SRAM without CPU
intervention

• Initiated by the software or external DMA
request

• Increment or decrement source or destination
addresses.

• Supports 8-bit(byte), 16-bit(half-word), and 32-
bit(word) of data transfer size.

I/O Ports

• 10 Programmable Input, Output, and I/O port
group (74 I/O ports including the multiplexed
I/O)

• One programmable Output port (2-bit
multiplexed output ports)

• One programmable Input port(8-bit multiplexed
input ports)

• Eight programmable I/O port group.

16-bit Timer/Counters (T0, T1, T2)

• Three-channel programmable 16-bit
timer/counter

• Interval, capture, match & overflow, or DMA
mode operation

• Internal or external clock source

8-bit Timer/Counters (T3, T4)

• Two-channel programmable 8-bit timer/counter

• Interval, capture, PWM, or DMA mode operation
(T4 PWM with 5-byte FIFO buffer, which can
provide the sound generation capability)

• Internal or external clock source

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-3

UART & SIO

• One-channel UART with DMA-based or
interrupt-based operation

• Programmable baud rates

• Supports 5-bit, 6-bit, 7-bit and 8-bit serial data
transmit/receive frame in UART

• Programmable accessible 8-byte transmitter
FIFO and 8-byte receiver FIFO in UART

• Two-channel synchronous SIO with DMA-based
or interrupt-based operation

• Support the serial data transmit/receive
operation by 8-bit frame.

Interrupt Controller

• 35 interrupt sources (12 External interrupt, 2
DMA, 3 UART, 11 Timer, ADC, IIC, 2 SIO,
Basic Timer, 2 RTC)

• H/W interrupt priority logic and vector
generation

• Normal or fast interrupt modes (IRQ, FIQ)

A/D Converter

• Eight-channel multiplexed ADC

• Successive approximation conversion

• 10-bit ADC

WDT(Watch-Dog Timer) and Basic Timer

• 8-bit Counter (Basic Timer) and 3-bit counter
(Watchdog Timer)

• The overflow signal of 8-bit counter can
generate a basic timer interrupt and should be
input clock for 3-bit counter(Watchdog Timer).

• The overflow signal of 3-bit counter makes a
system reset

IIC Bus Interface

• One-channel multi-master IIC-bus

• Support 8-bit, bi-directional, and serial data
transfer up to 100kbit/s.

RTC (Real Time Clock)

• Full clock function : second, minute, hours, day,
week, month, and year

• 32.768KHz operation

• Alarm interrupt for CPU wake-up

Power Down Mode

• Power mode: Idle, Slow and Stop mode

• System clock division ratio in slow mode: 1, 1/2,
1/8, 1/16, and 1/1024

Operating Voltage Range

• 3.0 V to 3.6 V

Temperature Range

• 0oC to 70oC

Operating Frequency

• up to 40MHz

Package Type

• 128-pin QFP

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-4

BLOCK DIAGRAM

System Clock
Circuit

Basic Timer
&

WDT

A/D
Converter

DMA0,1

UART

Serial I/O 0,1

Interrupt
Controller

Real Time Clock
Generator

GPIO
Controller

Timer 0,1,2,3,4

SYSTEM BUS CONTROLLER BUS ARBITRATION

BUS
INTERFACE

ROM/
FLASH/SRAM
CONTROLLER

FP/DRAM/
SDRAM

CONTROLLER

G
en

eral P
u

rp
o

se I/O
 P

o
rts

G
en

eral P
u

rp
o

se I/O
 P

o
rts

Crystal/
Ceramic
Oscillator

SYSTEM BUS

IIC BUS

Write
Buffer

ARM7TDMI
CPU Core

Cache
4 Kbyte

CPU Unit

Figure 1-1. S3C3410X Block Diagram

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-5

PIN ASSIGNMENTS

A
IN

3/
P

8.
3

A
IN

2/
P

8.
2

A
IN

1/
P

8.
1

A
IN

0/
P

8.
0

A
V

R
E

F
A

D
C

V
S

S

E
X

T
A

L1
X

T
A

L1
R

T
C

V
D

D

T
E

S
T

1
T

E
S

T
0

nR
E

S
E

T
E

X
T

A
L0

X
T

A
L0

R
P

7/
P

7.
7

R
P

6/
P

7.
6

V
D

D

V
S

S

R
P

5/
P

7.
5

T
D

O
/R

P
4/

P
7.

4
nT

R
S

T
/R

P
3/

P
7.

3
T

D
I/R

P
2/

P
7.

2
T

M
S

/R
P

1/
P

7.
1

T
C

K
/R

P
0/

P
7.

0
E

IN
T

3/
P

6.
7

S
IO

T
X

D
1/

P
6.

6

A
19

/P
1.

3
A

20
/E

IN
T

4/
P

1.
4

A
21

/E
IN

T
5/

P
1.

5
A

22
/E

IN
T

6/
P

1.
6

A
23

/E
IN

T
7/

P
1.

7
nC

S
0

nC
S

1/
P

2.
0

nC
S

2/
P

2.
1

nC
S

3/
P

2.
2

nC
S

4/
P

2.
3

nC
S

5/
P

2.
4

nC
S

6:
nR

A
S

0:
nS

C
S

0/
P

2.
5

V
S

S

V
D

D

nC
S

7:
nR

A
S

1:
nS

C
S

1/
P

2.
6

E
IN

T
1/

nE
C

S
0/

P
2.

7
nO

E
nA

S
nW

B
E

0:
nB

E
0:

D
Q

M
0/

P
3.

0
nW

B
E

1:
nB

E
1:

D
Q

M
1/

P
3.

1
nC

A
S

0:
nS

R
A

S
/P

3.
2

nC
A

S
1:

nS
C

A
S

/P
3.

3
nW

E
/P

3.
4

S
C

K
E

/P
3.

5
S

C
LK

/P
3.

6
E

IN
T

2/
nE

C
S

1/
P

3.
7

SIOCLK1/P6.5
SIORXD1/P6.4
SIORDY/nWAIT/P6.3
SIOTXD0/P6.2
SIOCLK0/P6.1
SIORXD0/P6.0
UTXD/P5.7
URXD/P5.6
VDD

VSS

IICSCK/P5.5
IICSDA/P5.4
nDACK1/P5.3
nDREQ1/P5.2
nDACK0/P5.1
nDREQ0/P5.0
D15/A23/P4.7
D14/A22/P4.6
VDD

VSS

D13/A21/P4.5
D12/A20/P4.4
D11/A19/P4.3
D10/A18/P4.2
D9/A17/P4.1
D8/A16/P4.0
D7
D6
VDD

VSS

D5
D4
D3
D2
D1
D0
DCLK/P9.1
LP/P9.0

AIN4/EINT8/P8.4
AIN5/EINT9/P8.5

AIN6/EINT10/P8.6
AIN7/EINT11/P8.7

ADCVDD

TCLK0/TCAP0/P0.0
TCLK1/TCAP1/P0.1
TCLK2/TCAP2P0.2

VSS

VDD

TCLK3/P0.3
TCLK4/P0.4

TCAP3/TOUT3/PWM0/P0.5
TCAP4/TOUT4/PWM1/P0.6

EINT0/nWREXP/P0.7
A0
A1
A2

VSS

VDD

A3
A4
A5
A6
A7

A8/A16
A9/A17

A10/A18
VSS

VDD

A11/A19
A12/A20
A13/A21
A14/A22
A15/A23

A16/P1.0
A17/P1.1
A18/P1.2

S3C3410X

(128-QFP-1420)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

12
8

12
7

12
6

12
5

12
4

12
3

12
2

12
1

12
0

11
9

11
8

11
7

11
6

11
5

11
4

11
3

11
2

11
1

11
0

10
9

10
8

10
7

10
6

10
5

10
4

10
3

Figure 1-2. S3C3410X Pin Assignments

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-6

Table 1-1. 128-Pin QFP Pin Assignment

Pin No Function I/O State @Initial I/O Type Reset

1 AIN4/EINT8/P8.4 I piseuc P8.4

2 AIN5/EINT9/P8.5 I piseuc P8.5

3 AIN6/EINT10/P8.6 I piseuc P8.6

4 AIN7/EINT11/P8.7 I piseuc P8.7

5 ADCVDD P vddt

6 TCLK0/TCAP0/P0.0 IO pbseuct4 P0.0

7 TCLK1/TCAP1/P0.1 IO pbseuct4 P0.1

8 TCLK2/TCAP2/P0.2 IO pbseuct4 P0.2

9 VSS P vss

10 VDD P vdd

11 TCLK3/P0.3 IO pbseuct4 P0.3

12 TCLK4/P0.4 IO pbseuct4 P0.4

13 TCAP3/TOUT3/PWM0/P0.5 IO pbseuct4 P0.5

14 TCAP4/TOUT4/PWM1/P0.6 IO pbseuct4 P0.6

15 EINT0/nWREXP/P0.7 IO pbseuct8 P0.7

16 A0 O pob8 A0

17 A1 O pob8 A1

18 A2 O pob8 A2

19 VSS P vss

20 VDD P vdd

21 A3 O pob8 A3

22 A4 O pob8 A4

23 A5 O pob8 A5

24 A6 O pob8 A6

25 A7 O pob8 A7

26 A8/A16 O pob8 A8

27 A9/A17 O pob8 A9

28 A10/A18 O pob8 A10

29 VSS P vss

30 VDD P vdd

31 A11/A19 O pob8 A11

32 A12/A20 O pob8 A12

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-7

Table 1-1. 128-Pin QFP Pin Assignment (Continued)

Pin No Function I/O State @Initial I/O Type Reset

33 A13/A21 O pob8 A13

34 A14/A22 O pob8 A14

35 A15/A23 O pob8 A15

36 A16/P1.0 IO pbcedct8 P1.0

37 A17/P1.1 IO pbcedct8 P1.1

38 A18/P1.2 IO pbcedct8 P1.2

39 A19/P1.3 IO pbcedct8 P1.3

40 A20/EINT4/P1.4 IO pbsedct8 P1.4

41 A21/EINT5/P1.5 IO pbsedct8 P1.5

42 A22/EINT6/P1.6 IO pbsedct8 P1.6

43 A23/EINT7/P1.7 IO pbsedct8 P1.7

44 nCS0 O pob8 nCS0

45 nCS1/P2.0 IO pbceuct8 P2.0

46 nCS2/P2.1 IO pbceuct8 P2.1

47 nCS3/P2.2 IO pbceuct8 P2.2

48 nCS4/P2.3 IO pbceuct8 P2.3

49 nCS5/P2.4 IO pbceuct8 P2.4

50 nCS6:nRAS0:nSCS0/P2.5 IO pbceuct8 P2.5

51 VSS P vss

52 VDD P vdd

53 nCS7:nRAS1:nSCS1/P2.6 IO pbceuct8 P2.6

54 EINT1/nECS0/P2.7 IO pbseuct8 P2.7

55 nOE O pob8 nOE

56 nAS O pob8 nAS

57 nWBE0:nBE0:DQM0/P3.0 IO pbceuct8 P3.0

58 nWBE1:nBE1:DQM1/P3.1 IO pbceuct8 P3.1

59 nCAS0:nSRAS/P3.2 IO pbceuct8 P3.2

60 nCAS1:nSCAS/P3.3 IO pbceuct8 P3.3

61 nWE/P3.4 IO pbceuct8 P3.4

62 SCKE/P3.5 IO pbceuct8 P3.5

63 SCLK/P3.6 IO pbceuct8 P3.6

64 EINT2/nECS1/P3.7 IO pbseuct8 P3.7

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-8

 Table 1-1. 128-Pin QFP Pin Assignment (Continued)

Pin No Function I/O State @Initial I/O Type Reset

65 LP/P9.0 O pob8 LP

66 DCLK/P9.1 O pob8 DCLK

67 D0 IO pbcedct8 D0

68 D1 IO pbcedct8 D1

69 D2 IO pbcedct8 D2

70 D3 IO pbcedct8 D3

71 D4 IO pbcedct8 D4

72 D5 IO pbcedct8 D5

73 VSS P vss

74 VDD P vdd

75 D6 IO pbcedct8 D6

76 D7 IO pbsedct8 D7

77 D8/A16/P4.0 IO pbcedct8 P4.0

78 D9/A17/P4.1 IO pbcedct8 P4.1

79 D10/A18/P4.2 IO pbcedct8 P4.2

80 D11/A19/P4.3 IO pbcedct8 P4.3

81 D12/A20/P4.4 IO pbcedct8 P4.4

82 D13/A21/P4.5 IO pbcedct8 P4.5

83 VSS P vss

84 VDD P vdd

85 D14/A22/P4.6 IO pbcedct8 P4.6

86 D15/A23/P4.7 IO pbcedct8 P4.7

87 nDREQ0/P5.0 IO pbceuct4 P5.0

88 nDACK0/P5.1 IO pbceuct4 P5.1

89 nDREQ1/P5.2 IO pbceuct4 P5.2

90 nDACK1/P5.3 IO pbceuct4 P5.3

91 IICSDA/P5.4 IO pbceuct8 P5.4

92 IICSCK/P5.5 IO pbceuct8 P5.5

93 VSS P vss

94 VDD P vdd

95 URXD/P5.6 IO pbceuct4 P5.6

96 UTXD/P5.7 IO pbceuct4 P5.7

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-9

Table 1-1. 128-Pin QFP Pin Assignment (Continued)

Pin No Function I/O State @Initial I/O Type Reset

97 SIORXD0/P6.0 IO pbseuct4 P6.0

98 SIOCLK0/P6.1 IO pbseuct4 P6.1

99 SIOTXD0/P6.2 IO pbseuct4 P6.2

100 SIORDY/nWAIT/P6.3 IO pbseuct4 P6.3

101 SIORXD1/P6.4 IO pbseuct4 P6.4

102 SIOCLK1/P6.5 IO pbseuct4 P6.5

103 SIOTXD1/P6.6 IO pbseuct4 P6.6

104 EINT3/P6.7 IO pbseuct4 P6.7

105 TCK/RP0/P7.0 IO pbceuct4 P7.0

106 TMS/RP1/P7.1 IO pbceuct4 P7.1

107 TDI/RP2/P7.2 IO pbceuct4 P7.2

108 nTRST/RP3/P7.3 IO pbceuct4 P7.3

109 TDO/RP4/P7.4 IO pbceuct4 P7.4

110 RP5/P7.5 IO pbceuct4 P7.5

111 VSS P vss

112 VDD P vdd

113 RP6/P7.6 IO pbceuct4 P7.6

114 RP7/P7.7 IO pbceuct4 P7.7

115 XTAL0 I oscm XTAL0

116 EXTAL0 O oscm EXTAL0

117 RESET I pisu RESET
118 TEST0 I pis TEST0

119 TEST1 I pis TEST1

120 RTCVDD P vddt

121 XTAL1 I oscm XTAL1

122 EXTAL1 O oscm EXTAL1

123 ADCVSS P vsst

124 AVREF A apad AVREF

125 AIN0/P8.0 I piseuc P8.0

126 AIN1/P8.1 I piseuc P8.1

127 AIN2/P8.2 I piseuc P8.2

128 AIN3/P8.3 I piseuc P8.3

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-10

Table 1-2. I/O Type Description

I/O Type Description

vdd, vss 3.3V Vdd/Vss

vddt, vsst 3.3V Vdd/Vss for analog circuitry

pbceuct4 bi-direction pad, CMOS level, pull-up resister with control, tri-state, Io = 4mA

pbseuct4 bi-direction pad, CMOS schmitt-trigger, pull-up resister with control, tri-state, Io = 4mA

pbceuct8 bi-direction pad, CMOS level, pull-up resister with control, tri-state, Io = 8mA

pbseuct8 bi-direction pad, CMOS schmitt-trigger, pull-up resister with control, tri-state, Io = 8mA

pbcedct8 bi-direction pad, CMOS level, pull-down resister with control, tri-state, Io = 8mA

pbsedct8 bi-direction pad, CMOS schmitt-trigger, pull-down resister with control, tri-state, Io = 8mA

pob8 output pad, Io = 8mA

pis input pad, CMOS schmitt-trigger

pisu input pad, CMOS schmitt-trigger, pull-up resister

piceuc input pad, CMOS level, pull-up resister with control

piseuc input pad, CMOS schmitt-trigger, pull-up resister with control

apad pad for analog pin

oscm pad for x-tal oscillation

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-11

PIN DESCRIPTIONS

Table 1-3. S3C3410X Pin Descriptions

Pin I/O Description

BUS CONTROLLER

TEST[1:0] I The TEST[1:0] can configure the data bus size for bank 0 in normal or MDS mode.
The normal mode is for CPU to start its operation by fetching the instruction from
external memory. The MDS mode is for CPU to be debugged by the external
Emulator, EmbeddedICE, etc.
00 = Normal mode with 8-bit data bus size for bank 0 access.
01 = Normal mode with 16-bit data bus size for bank 0 access.
10 = MDS mode with 8-bit data bus size for bank 0 access.
11 = MDS mode with 16-bit data bus size for bank 0 access.

A[23:0] O A[23:0] (address bus) generate the address when external memory access.

D[15:0] I/O D[15:0] (Data bus) input the data during memory read and output the data during
memory write. The data bus width can be programmable for 8-bit or 16-bit by the
BANKCONx register option.

nCS[7:0] O nCS[7:0] (Chip Select) selectively generate the chip select signal of each bank when
the external memory access address is within the address range of each bank. The
number of access cycle and the bank size can be programmable by the BANKCONx
register option.

nECS[1:0] O nECS[1:0] (External Chip Select) generate the external chip select signal for the
extra device (External I/O device).

nOE O nOE (Output Enable) indicates that the current bus cycle is a read cycle.

nWE O nWE (Write Enable for x16 SRAM or SDRAM) indicates that the current bus cycle is
a write cycle. To support the byte write to external memory, the byte to be accessed
can be determined by nBE[1:0], which is the selection on upper byte or lower byte.
For example, in case of 16-bit SRAM, nBE[1:0] should play it role as UB(Upper
Byte)/LB(Lower Byte) to select the upper byte or lower byte. In case of SDRAM,
nWBE[1:0] should play it role as DQM[1:0] to select the upper byte or lower byte. For
16-bit access, not 8-bit access, both nWBE[1:0] should be activated at same time. In
certain case, no more byte access is needed. For example, x16 Flash Memory does
not need byte access through 16-bit bus when user need the programming in the
flash memory. In this case, please use nWBE[0] instead of nWE to indicate that the
current bus cycle is a write cycle. Summarizing, nWE should be used to indicate the
write bus cycle in case of x16 SRAM and x16/x8 SDRAM. In case of x16 with two x8
SRAM, nWBE[0] and nWBE[1] should be connected to the WE of SRAM,
respectively. For more detail information, please refer the chapter 4.

nWBE[1:0] O nWBE[1:0] (Write Byte Enable). In case of Flash or ROM access, nWBE[0] should
be connected to the WE of memory. For the access to the non-volatile memory, we
do not need the selection on bytes because the 8-bit write cycle via 16-bit bus is no
more necessary. To program the data into the non-volatile memory, we should
always use the 16-bit access. In this configuration, please use nWBE[0] instead of
nWE to indicate that the current bus cycle is a write cycle. Summarizing, nWBE[0]
should be used to indicate the current write bus cycle in case of x8 SRAM, x8/x16
ROM, EDODRAM or Flash memory. For more detail information, please refer the
chapter 4.

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-12

Table 1-3. S3C3410X Signal Descriptions (Continued)

Pin I/O Description

nAS O nAS generates an address strobe signal for latch device in multiplexed address
mode which generate A[23:16] and A[15:8] address in A[15:8] pins.

nWAIT I nWAIT receives request signal to prolong a current bus cycle. As long as nWAIT is
"Low", the current bus cycle cannot be completed.

nWREXP O nWREXP outputs write strobe signal for external device, when you write any data
into EXTPORT register to interface external device.

DRAM/SDRAM

nRAS[1:0] O Row Address Strobe

nCAS[1:0] O Column Address Strobe

nSCS[1:0] O SDRAM Chip Select

nSRAS O SDRAM Row Address Strobe

nSCAS O SDRAM Column Address Strobe

DQM[1:0] O SDRAM Data Mask

SCLK O SDRAM Clock

SCKE O SDRAM Clock Enable

16-bit/8-bit Timer

TCLK[4:0] I External clock input for Timer

TCAP[4:0] I Capture input for Timer

TOUT[4:3] O Timer 3, 4 output or PWM output

DMA

nDREQ[1:0] I External DMA request

nDACK[1:0] O External DMA acknowledge

Interrupt Controller

EINT[12:0] I External interrupt request

UART

URXD I UART receives data input

UTXD O UART transmits data output

SIO

SIOCLK[1:0] I/O SIO external clock

SIORXD[1:0] I SIO receives data input

SIOTXD[1:0] O SIO transmits data output

SIORDY I/O SIO handshakes signal when SIO operation is done by DMA

IIC-BUS

IICSDA I/O IIC-bus data

IICSCK I/O IIC-bus Clock

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-13

Table 1-3. S3C3410X Signal Descriptions (Continued)

Pin I/O Description

ADC

AIN[7:0] A ADC input

AVREF A ADC Vref

General Purpose I/O

Pn.x I/O General purpose input/output ports

RP[7:0] O Real time buffer output ports (refer to P7)

RESET & Clock

RESET I RESET is the global reset input for the S3C3410X. For a system reset, RESET must
be held to "Low" level for at least 1us.

XTAL0 A Crystal input for internal oscillation circuit for system clock

EXTAL0 A Crystal output for internal oscillation circuit for system clock. It's the inverted output
of XTAL0.

XTAL1 A 32.768KHz crystal input for RTC

EXTAL1 A 32.768KHz crystal output for RTC. It's the inverted output of XTAL1.

LCD Interface

LP O LCD Line Pulse (Inversion of nECS0)

DCLK O LCD Clock (Inversion of nWREXP)

JTAG Test Logic

nTRST I nTRST (TAP Controller Reset) can reset the TAP controller at power-up. A 100K
pull-up resistor is connected to nTRST pin, internally. If the debugger(BlackICE) is
not used, nTRST pin should be "Low" level or low active pulse should be applied
before CPU running. For example, RESET signal can be tied with nTRST.

TMS I TMS (TAP Controller Mode Select) can control the sequence of the state diagram of
TAP controller. A 100K pull-up resistor is connected to TMS pin, internally.

TCK I TCK (TAP Controller Clock) can provide the clock input for the JTAG logic. A 100K
pull-up resistor is connected to TCK pin, internally.

TDI I TDI (TAP Controller Data Input) is the serial input for JTAG port. A 100K pull-up
resistor is connected to TDI pin, internally.

TDO O TDO (TAP Controller Data Output) is the serial output for JTAG port.

POWER

VDD P Power supply pin

VSS P Ground pin

RTCVDD P RTC power supply

ADCVDD P ADC power supply

ADCVSS P ADC ground & RTC ground

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-14

S3C3410X SPECIAL FUNCTION REGISTER

Table 1-4. S3C3410X Special Function Register

Group Register Offset R/W Description Acces
s

Reset Value

System SYSCFG0 0x1000 R/W System Configuration Register W 0xfff1

Manager BANKCON0 0x2000 R/W Memory Bank 0 Control Register W 0x00200070

BANKCON1 0x2004 R/W Memory Bank 1 Control Register W 0x0

BANKCON2 0x2008 R/W Memory Bank 2 Control Register W 0x0

BANKCON3 0x200c R/W Memory Bank 3 Control Register W 0x0

BANKCON4 0x2010 R/W Memory Bank 4 Control Register W 0x0

BANKCON5 0x2014 R/W Memory Bank 5 Control Register W 0x0

BANKCON6 0x2018 R/W Memory Bank 6 Control Register W 0x0

BANKCON7 0x201c R/W Memory Bank 7 Control Register W 0x0

REFCON 0x2020 R/W DRAM Refresh Control Register W 0x1

EXTCON0 0x2030 R/W Extra device control register 0 W 0x0

EXTCON1 0x2034 R/W Extra device control register 1 W 0x0

EXTPORT 0x203e R/W External port data register B/H 0x0

EXTDAT0 0x202c R/W Extra chip selection data register 0 B/H 0x0

EXTDAT1 0x202e R/W Extra chip selection data register 1 B/H 0x0

DMA DMACON0 0x300c R/W DMA 0 control register W 0x0

DMASRC0 0x3000 R/W DMA 0 source address register W 0x0

DMADST0 0x3004 R/W DMA 0 destination address register W 0x0

DMACNT0 0x3008 R/W DMA 0 transfer count register W 0x0

DMACON1 0x400c R/W DMA 1 Control Register W 0x0

DMASRC1 0x4000 R/W DMA 1 source address register W 0x0

DMADST1 0x4004 R/W DMA 1 destination address register W 0x0

DMACNT1 0x4008 R/W DMA 1 transfer count register W 0x0

I/O Port PDAT0 0xb000 R/W Port 0 data register B 0x0

PDAT1 0xb001 R/W Port 1 data register B 0x0

PDAT2 0xb002 R/W Port 2 data register B 0x0

PDAT3 0xb003 R/W Port 3 data register B 0x0

PDAT4 0xb004 R/W Port 4 data register B 0x0

PDAT5 0xb005 R/W Port 5 data register B 0x0

PDAT6 0xb006 R/W Port 6 data register B 0x0

PDAT7 0xb007 R/W Port 7 data register B 0x0

PDAT8 0xb008 R Port 8 data register B 0x0

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-15

Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access Reset Value

I/O Port PDAT9 0xb009 R/W Port 9 data register B 0x0

P7BR 0xb00b R/W Port 7 buffer register B 0x0

PCON0 0xb010 R/W Port 0 control register H 0x0

PCON1 0xb012 R/W Port 1 control register H 0x0

PCON2 0xb014 R/W Port 2 control register H 0x0

PCON3 0xb016 R/W Port 3 control register H 0x0

PCON4 0xb018 R/W Port 4 control register H 0x0

PCON5 0xb01c R/W Port 5 control register W 0x0

PCON6 0xb020 R/W Port 6 control register W 0x0

PCON7 0xb024 R/W Port 7 control register H 0x0

PCON8 0xb026 R/W Port 8 control register B 0x0

PCON9 0xb027 R/W Port 9 control register B 0x0

PUR0 0xb028 R/W Port 0 pull-up control register B 0x80

PDR1 0xb029 R/W Port 1 pull-down control register B 0xff

PUR2 0xb02a R/W Port 2 pull-up control register B 0xff

PUR3 0xb02b R/W Port 3 pull-up control register B 0xff

PDR4 0xb02c R/W Port 4 pull-down control register B 0xff

PUR5 0xb02d R/W Port 5 pull-up control register B 0x0

PUR6 0xb02e R/W Port 6 pull-up control register B 0x0

PUR7 0xb02f R/W Port 7 pull-up control register B 0x0

PUR8 0xb03c R/W Port 8 pull-up control register B 0x0

EINTPND 0xb031 R/W External interrupt pending register B 0x0

EINTCON 0xb032 R/W External interrupt control register H 0x0

EINTMOD 0xb034 R/W External interrupt mode register W 0x0

Timer 0 TDAT0 0x9000 R/W Timer 0 data register H 0xffff

TPRE0 0x9002 R/W Timer 0 prescaler register B 0x0

TCON0 0x9003 R/W Timer 0 control register B 0x0

TCNT0 0x9006 R Timer 0 counter register H 0x0

Timer 1 TDAT1 0x9010 R/W Timer 1 data register H 0xffff

TPRE1 0x9012 R/W Timer 1 prescaler register B 0x0

TCON1 0x9013 R/W Timer 1 control register B 0x0

TCNT1 0x9016 R Timer 1 counter register H 0x0

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-16

Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access Reset Value

Timer 2 TDAT2 0x9020 R/W Timer 2 data register H 0xffff

TPRE2 0x9022 R/W Timer 2 prescaler register B 0x0

TCON2 0x9023 R/W Timer 2 control register B 0x0

TCNT2 0x9026 R Timer 2 counter register H 0x0

Timer 3 TDAT3 0x9031 R/W Timer 3 data register B 0xff

TPRE3 0x9032 R/W Timer 3 prescaler register B 0x0

TCON3 0x9033 R/W Timer 3 control register B 0x0

TCNT3 0x9037 R Timer 3 counter register B 0x0

Timer 4 TDAT4 0x9041 R/W Timer 4 data register B 0xff

TPRE4 0x9042 R/W Timer 4 prescaler register B 0x0

TCON4 0x9043 R/W Timer 4 control register B 0x0

TCNT4 0x9047 R Timer 4 counter register B 0x0

TFCON 0x904f R/W FIFO control register of Timer 4 B 0x0

TFSTAT 0x904e R FIFO status register of Timer 4 B 0x0

TFB4 0x904b R/W Timer 4 FIFO register @ byte B 0x0

TFHW4 0x904a R/W Timer 4 FIFO register @ half-word H 0x0

TFW4 0x9048 R/W Timer 4 FIFO register @ word W 0x0

UART ULCON 0x5003 R/W UART line control register B 0x0

UCON 0x5007 R/W UART control register B 0x0

USTAT 0x500b R UART status register B 0x0

UFCON 0x500f R/W UART FIFO control register B 0x0

UFSTAT 0x5012 R UART FIFO status register B 0x0

UTXH 0x5017 R/W UART transmit holding register B 0x0

UTXH_B 0x5017 R/W UART transmit FIFO register @ byte B 0x0

UTXH_HW 0x5016 R/W UART transmit FIFO register
@ half-word

H 0x0

UTXH_W 0x5014 R/W UART transmit FIFO register @ word W 0x0

URXH 0x501b R/W UART receive buffer register B 0x0

URXH_B 0x501b R/W UART receive FIFO register @ byte B 0x0

URXH_HW 0x501a R/W UART receive FIFO register
@ half-word

H 0x0

URXH_W 0x5018 R/W UART receive FIFO register @ word W 0x0

UBRDIV 0x501e R/W Baud rate divisor register for UART H 0x0

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-17

Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access Reset Value

SIO 0 ITVCNT0 0x6000 R/W SIO 0 interval counter register B 0x0

SBRDR0 0x6001 R/W SIO 0 baud rate prescaler register B 0x0

SIODAT0 0x6002 R/W SIO 0 data register B 0x0

SIOCON0 0x6003 R/W SIO 0 control register B 0x0

SIO 1 ITVCNT1 0x7000 R/W SIO 1 interval counter register B 0x0

SBRDR1 0x7001 R/W SIO 1 baud rate prescaler register B 0x0

SIODAT1 0x7002 R/W SIO 1 data register B 0x0

SIOCON1 0x7003 R/W SIO 1 control register B 0x0

Interrupt INTMOD 0xc000 R/W Interrupt mode register W 0x0

INTPND 0xc004 R/W Interrupt pending register W 0x0

INTMSK 0xc008 R/W Interrupt mask register W 0x0

INTPRI0 0xc00c R/W Interrupt priority register 0 W 0x03020100

INTPRI1 0xc010 R/W Interrupt priority register 1 W 0x07060504

INTPRI2 0xc014 R/W Interrupt priority register 2 W 0x0b0a0908

INTPRI3 0xc018 R/W Interrupt priority register 3 W 0x0f0e0d0c

INTPRI4 0xc01c R/W Interrupt priority register 4 W 0x13121110

INTPRI5 0xc020 R/W Interrupt priority register 5 W 0x17161514

INTPRI6 0xc024 R/W Interrupt priority register 6 W 0x1b1a1918

INTPRI7 0xc028 R/W Interrupt priority register 7 W 0x1f1e1d1c

ADC ADCCON 0x8002 R/W A/D Converter control register H 0x140

ADCDAT 0x8006 R A/D Converter data register H 0x0

Basic BTCON 0xa002 R/W Basic Timer control register H 0x0

Timer BTCNT 0xa007 R Basic Timer count register B 0x0

IIC IICCON 0xe000 R/W IIC-bus control register B 0x0

IICSTAT 0xe001 R/W IIC-bus status register B 0x0

IICDS 0xe002 R/W IIC-Bus transmit/receive data shift
register

B 0x0

IICADD 0xe003 R/W IIC-Bus transmit/receive address
register

B 0x0

IICPS 0xe004 R/W IIC-Bus Prescaler register B 0x0

IICPCNT 0xe005 R/W IIC-Bus Prescaler Counter register B 0x0

SYSON 0xd003 R/W System control register B 0x0

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

1-18

Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access Reset Value

RTC RTCCON 0xa013 R/W RTC control register B 0x0

RTCALM 0xa012 R/W RTC alarm control register B 0x0

ALMSEC 0xa033 R/W Alarm second data register B 0x59

ALMMIN 0xa032 R/W Alarm minute data register B 0x59

ALMHOUR 0xa031 R/W Alarm hour data register B 0x23

ALMDAY 0xa037 R/W Alarm day data register B 0x31

ALMMON 0xa036 R/W Alarm month data register B 0x12

ALMYEAR 0xa035 R/W Alarm year data register B 0x99

BCDSEC 0xa023 R/W BCD second data register B –

BCDMIN 0xa022 R/W BCD minute data register B –

BCDHOUR 0xa021 R/W BCD hour data register B –

BCDDAY 0xa027 R/W BCD day data register B –

BCDDATE 0xa020 R/W BCD date data register B –

BCDMON 0xa026 R/W BCD month data register B –

BCDYEAR 0xa025 R/W BCD year data register B –

RINTPND 0xa010 R/W RTC time interrupt pending register B 0x0

RINTCON 0xa011 R/W RTC time interrupt control register B 0x0

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-1

2 PROGRAMMER'S MODEL

OVERVIEW

S3C3410X was developed using the advanced ARM7TDMI core designed by Advanced RISC Machines, Ltd.
ARM7TDMI supports big-endian and little-endian memory formats, but the S3C3410X supports only the big-
endian memory format.

PROCESSOR OPERATING STATES

From the programmer's point of view, the ARM7TDMI can be in one of two states:

• ARM state which executes 32-bit, word-aligned ARM instructions.

• THUMB state which operates with 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit
1 to select between alternate halfwords.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand register.

• On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode's link register, and execution commences at the exception's vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-2

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

31

8

4

0

23

9

5

1

10

6

2

11

7

3

8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

24 1516

Figure 2-1. Big-Endian Addresses of Bytes within Words

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0.

31 23 8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

24 1516

8

4

0

9

5

1

10

6

2

11

7

3

Figure 2-2. Little-Endian Addresses of Bytes whthin Words

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARM7TDMI supports byte (8-bit), halfword (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-3

OPERATING MODES

ARM7TDMI supports seven modes of operation:

• User (usr): The normal ARM program execution state

• FIQ (fiq): Designed to support a data transfer or channel process

• IRQ (irq): Used for general-purpose interrupt handling

• Supervisor (svc): Protected mode for the operating system

• Abort mode (abt): Entered after a data or instruction prefetch abort

• System (sys): A privileged user mode for the operating system

• Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes' known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information.

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch
and Link (BL) instruction is executed. At all other times it may be treated as a
general-purpose register. The corresponding banked registers R14_svc, R14_irq,
R14_fiq, R14_abt and R14_und are similarly used to hold the return values of R15
when interrupts and exceptions arise, or when Branch and Link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
[31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags
and the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM state, many FIQ handlers do
not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers
mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-4

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R8_fiq

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

R13_und

R14_und

R15 (PC)

User/System FIQ Supervisor IRQAbort Undefined

ARM State General Registers and Program Counter

ARM State Program Status Registers

CPSR CPSR

SPSR_fiq

CPSR

SPSR_irq

= banked register

CPSR

SPSR_und

CPSR

SPSR_abt

CPSR

SPSR_svc

Figure 2-3. Register Organization in ARM State

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-5

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

R0

R1

R2

R3

R4

R5

R6

R7

LR

SP

PC

User/System FIQ Supervisor IRQAbort Undefined

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

= banked register

LR_fiq

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

PC

LR_svc

R0

R1

R2

R3

R4

R5

R6

R7

SP_svc

PC

LR_und

R0

R1

R2

R3

R4

R5

R6

R7

SP_und

PC

LR_fiq

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

PC

LR_abt

R0

R1

R2

R3

R4

R5

R6

R7

SP_abt

PC

Figure 2-4. Register Organization in THUMB state

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-6

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• THUMB state SP maps onto ARM state R13

• THUMB state LR maps onto ARM state R14

• The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

R0

R1

R2

R3

R4

R5

R6

R7

Stack Pointer (SP)

Link register (LR)

Program Counter (PC)

CPSR

SPSR

R0

R1

R2

R3

R4

R5

R6

R7

R9

R8

R10

R11

R12

Stack Pointer (R13)

Link register (R14)

Program Counter (R15)

CPSR

SPSR

Lo
-r

eg
is

te
rs

H
i-r

eg
is

te
rs

THUMB state ARM state

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-7

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register's functions are:

• Hold information about the most recently performed ALU operation

• Control the enabling and disabling of interrupts

• Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

~ ~31

Condition Code Flags

Overflow

N Z C V I F T M4 M3 M2 M1 M0

30 29 2728 26 25 24 23 8 7 6 5 4 3 2 1 0

(Reserved) Control Bits

Carry/Borrow/Extend

Zero

Negative/Less Than

Mode bits

State bit

FIQ disable

IRQ disable

~ ~

Figure 2-6. Program Status Register Format

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-8

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
be changed when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in THUMB
state, otherwise it is executing in ARM state. This is reflected on the TBIT external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
processor's operating mode, as shown in Table 2-1. Not all combinations of the mode bits
define a valid processor mode. Only those explicitly described shall be used. The user
should be aware that if any illegal value is programmed into the mode bits, M[4:0], then the
processor will enter an unrecoverable state. If this occurs, reset should be applied.

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR's flag or control bits,
you must ensure that these unused bits are not altered. Also, your program should not rely
on them containing specific values, since in future processors they may read as one or
zero.

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-9

Table 2-1. PSR Mode Bit Values

M[4:0] Mode Visible THUMB state registers Visible ARM state registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq, R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc, R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt, R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und, R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

Reserved bits The remaining bits in the PSR's are reserved. When changing a PSR's flag or control bits,
 you must ensure that these unused bits are not altered. Also, your program should not rely
 on them containing specific values, since in future processors they may read as one or
 zero.

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-10

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
See Exception Priorities on page 2-14.

Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate Link Register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the Link Register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the Link Register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14_svc will always return to the next instruction regardless of whether the SWI
was executed in ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-11

Exception Entry/Exit Summary

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA – – 4

NOTES:
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimising the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-12

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

• Prefetch abort: occurs during an instruction prefetch.

• Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

• The swap instruction (SWP) is aborted as though it had not been executed.

• Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is
prevented. All register overwriting is prevented after an abort is indicated, which means in particular that R15
(always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-13

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode in Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software Interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-14

Exception Priorites

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR's F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-15

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the
instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq.
This is 4 processor cycles.

RESET

When the RESETRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When RESETRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value
of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR's T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

2-16

NOTES

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-1

3 INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

Cond Rn Data/Processing/
PSR Transfer

0 0 I SOpcode

0 0 0 P U 0 W L

0 0 0 P U 1 W L

0 1 I P U B W L

0 1 I

1 0 0 P U B W L

11 11 1 1 11

1 0 L1

1 1 0 P U B W L

1 1 11

1 1 01

1 1 01 L

Rd

Rd

RnRdHi RdLo

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rn Register List

Rn

CRn

CRn

CRd

Rd

CP Opc

CP
Opc

Operand2

Rs

Rm

Rm

Rm

Rm

Rn

Rn

Rd

Offset Offset

CRd OffsetCP#

CP#

CP#

CP

CP

CRm

CRm

Ignored by processor

0

1

Offset

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 00 A S

A SU10 0 00

0 0 0 0 0 01 B

1 00 010 0 0

1

1

1

1

1

1

0

0

0

0

H

H

0

0

0

0

S

S

1

1

1

0

1

1

1

0

0

1

0

0

1

0

0

1

0

0

1

Multiply

Multiply Long

Single Data Swap

Branch and Exchange

Halfword Data Transfer:
register offset

Halfword Data Transfer:
immendiate offset

Single Data Transfer

Undefined

Block Data Transfer

Branch

Coprocessor Register Transfer

Coprocessor Data Operation

Coprocessor Data Transfer

Software Interrupt

Offset

27 26 25 24 23 22 21 20 19 18 17 16 15 1314 12 11 1031 30 29 28 9 8 7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20 19 18 17 16 15 1314 12 11 1031 30 29 28 9 8 7 6 5 4 3 2 1 0

Figure 3-1. ARM Instruction Set Format

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-2

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their
action may change in future ARM implementations.

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn AND Op2

B Branch R15: = address

BIC Bit Clear Rd: = Rn AND NOT Op2

BL Branch with Link R14: = R15, R15: = address

BX Branch and Exchange R15: = Rn, T bit: = Rn[0]

CDP Coprocessor Data Processing (Coprocessor-specific)

CMN Compare Negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn – Op2

EOR Exclusive OR Rd: = (Rn AND NOT Op2)
OR (Op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to coprocessor
register

cRn: = rRn {<op>cRm}

MLA Multiply Accumulate Rd: = (Rm × Rs) + Rn

MOV Move register or constant Rd: = Op2

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-3

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action

MRC Move from coprocessor register to
CPU register

Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to register Rn: = PSR

MSR Move register to PSR status/flags PSR: = Rm

MUL Multiply Rd: = Rm × Rs

MVN Move negative register Rd: = 0 × FFFFFFFF EOR Op2

ORR OR Rd: = Rn OR Op2

RSB Reverse Subtract Rd: = Op2 – Rn

RSC Reverse Subtract with Carry Rd: = Op2 – Rn – 1 + Carry

SBC Subtract with Carry Rd: = Rn – Op2 – 1 + Carry

STC Store coprocessor register to memory address: = CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn – Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd: = [Rn], [Rn] := Rm

TEQ Test bit wise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-4

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction's condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction's mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal",
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (suffix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-5

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 2427 19 15 8 7 0

00 0 1 10 0 0 11 1 1 11 1 1 11 1 1 00 0 1Cond Rn

28 16 111223 20 4 3

[3:0] Operand Register
If bit0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit0 of Rn =0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-2. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequential (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.

BX {cond} Rn
{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behavior is undefined.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-6

Examples

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
•
•
•
ADR R5, Back_to_ARM ; Generate branch target to word aligned address

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
•
•
•
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-7

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below.

31 2427

Cond Offset

28 23

[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

25

101 L

0

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/– 32Mbytes. The branch offset
must take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/– 32Mbytes must use an offset or absolute destination which has been previously loaded into
a register. In this case the PC should be manually saved in R14 if a Branch with Link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
sequential (S-cycle) and internal (I-cycle).

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-8

ASSEMBLER SYNTAX

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} Used to request the Branch with Link form of the instruction. If absent, R14 will not be
affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be
used.

<expression> The destination. The assembler calculates the offset.

EXAMPLES

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.
BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-9

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.
The instruction encoding is shown in Figure 3-4.

31 2427 19 15

Cond Operand2

28 16 111221

[15:12] Destination register
0 = Branch 1 = Branch with link

[19:16] 1st operand register
0 = Branch 1 = Branch with link

[20] Set condition codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation codes
0000 = AND-Rd: = Op1 AND Op2
0001 = EOR-Rd: = Op1 EOR Op2
0010 = SUB-Rd: = Op1-Op2
0011 = RSB-Rd: = Op2-Op1
0100 = ADD-Rd: = Op1+Op2
0101 = ADC-Rd: = Op1+Op2+C
0110 = SBC-Rd: = OP1-Op2+C-1
0111 = RSC-Rd: = Op2-Op1+C-1
1000 = TST-set condition codes on Op1 AND Op2
1001 = TEO-set condition codes on OP1 EOR Op2
1010 = CMP-set condition codes on Op1-Op2
1011 = SMN-set condition codes on Op1+Op2
1100 = ORR-Rd: = Op1 OR Op2
1101 = MOV-Rd: =Op2
1110 = BIC-Rd: = Op1 AND NOT Op2
1111 = MVN-Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an immediate value

[11:0] Operand 2 type selection

26 25

00 L

20

OpCode S Rn Rd

0

Rotate

Shift Rm

[3:0] 2nd operand register [11:4] Shift applied to Rm

311 04

811 07

Imm

[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to Imm

[31:28] Condition field

Figure 3-4. Data Processing Instructions

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-10

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the I bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-11

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler Mnemonic OP Code Action

AND 0000 Operand1 AND operand2

EOR 0001 Operand1 EOR operand2

WUB 0010 Operand1 – operand2

RSB 0011 Operand2 operand1

ADD 0100 Operand1 + operand2

ADC 0101 Operand1 + operand2 + carry

SBC 0110 Operand1 – operand2 + carry – 1

RSC 0111 Operand2 – operand1 + carry – 1

TST 1000 As AND, but result is not written

TEQ 1001 As EOR, but result is not written

CMP 1010 As SUB, but result is not written

CMN 1011 As ADD, but result is not written

ORR 1100 Operand1 OR operand2

MOV 1101 Operand2 (operand1 is ignored)

BIC 1110 Operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-12

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register (other than R15). The encoding for the
different shift types is shown in Figure 3-5.

0

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:7] Shift amount
5 bit unsigned integer

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:8] Shift register
Shift amount specified in bottom-byte of Rs

456711

1

456711 8

0RS

Figure 3-5. ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

31 27 26

Contents of Rm

Value of Operand 2

carry out

0

0

0000

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-13

31

Contents of Rm

Value of Operand 2

0

carry out

45

00000

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure
3-8.

31

Contents of Rm

Value of Operand 2

0

carry out

4530

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-14

Rotate right (ROR) operations reuse the bits which "overshoot" in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9.

31

Contents of Rm

Value of Operand 2

0

carry out

45

Figure 3-9. Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of the
barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity formed by
appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure 3-10.

31

Contents of Rm

Value of Operand 2

01

carry outC
in

Figure 3-10. Rotate Right Extended

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-15

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1. LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2. LSL by more than 32 has result zero, carry out zero.

3. LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4. LSR by more than 32 has result zero, carry out zero.

5. ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6. ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7. ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-16

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERANDY

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer
operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a privileged
mode and to do nothing if in User modify

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles

Normal data processing 1S

Data processing with register specified shift 1S + 1I

Data processing with PC written 2S + 1N

Data processing with register specified shift and PC written 2S + 1N +1I

NOTE: S, N and I are as defined sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle) respectively.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-17

ASSEMBLER SYNTAX

•• MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

•• CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

•• AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm Expressions evaluating to a register number.

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with
extend).

<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)

EXAMPLES

ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

; from SPSR_mode.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-18

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in
Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS

•• In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

•• Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

•• The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

•• You must not specify R15 as the source or destination register.

•• Also, do not attempt to access an SPSR in User mode, since no such register exists.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-19

MRS (transfer register contents or immediate value to PSR flag bits only)

Cond Source operandPd 101001111

31 222728 11122123

I 1000

26 25 24 0

Cond 0000000000010 Pd 101001111

31 222728 11122123

Rm

MRS (transfer register contents to PSR)

4 3 0

Cond 00000000000000010 RdPs 001111

31 2227 1528 16 11122123

MRS (transfer PSR contents to a register)

0

[3:0] Source Register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[15:21] Destination Register

[19:16] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[3:0] Source Register
[11:4] Source operand is an immediate value

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to Imm

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = SPSR_<current mode>

[11:0] Source Operand

[31:28] Condition Field

00000000 Rm

11 4 3 0

Rotate Imm

11 08 7

Figure 3-11. PSR Transfer

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-20

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:

• The reserved bits should be preserved when changing the value in a PSR.

• Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

EXAMPLES

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-21

ASSEMBLY SYNTAX

•• MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

•• MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

•• MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

•• MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolize a 32 bit value of which the most significant four bits are written to the N,Z,C
and V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-2.

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR
and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit field
to match the expression. If this is impossible, it will give an error.

EXAMPLES

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA (set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5 (set Z,V; clear N,C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC (set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-22

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

31 27 19 15

Cond

28 16 111221 20

S Rd Rn

[15:12][11:8][3:0] Operand Registers
[19:16] Destination Register

[20] Set Condition Code
0 = Do not after condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[31:28] Condition Field

22

1 0 0 1Rs RmA00 0 0 0 0

8 7 4 3 0

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd:=Rm×Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set. The multiply-accumulate form gives Rd:=Rm×Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2's complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits -
the low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits
of a multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-23

If the Operands Are Interpreted as Signed

Operand A has the value –10, operand B has the value 20, and the result is -200 which is correctly represented
as 0xFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-24

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs. Its possible values are
as follows

1 If bits [32:8] of the multiplier operand are all zero or all one.

2 If bits [32:16] of the multiplier operand are all zero or all one.

3 If bits [32:24] of the multiplier operand are all zero or all one.

4 In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

EXAMPLES

MUL R1,R2,R3 ; R1:=R2×R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2×R3+R4, Setting condition codes.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-25

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL, MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 27 19 15

Cond

28 16 11122123

U

20

S RdHi RdLo

[11:8][3:0] Operand Registers
[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned
1 = Signed

[31:28] Condition Field

22

00 0 0 1 1 0 0 1Rs RmA

8 7 4 3 0

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi,RdLo := Rm × Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the
result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi,RdLo := Rm × Rs + RdHi,RdLo. The lower 32 bits of the 64 bit
number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32
bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signed 64 bit result.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-26

OPERAND RESTRICTIONS

•• R15 must not be used as an operand or as a destination register.

•• RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed INSTRUCTIONS SMULL, SMLAL:

•• If bits [31:8] of the multiplier operand are all zero or all one.

•• If bits [31:16] of the multiplier operand are all zero or all one.

•• If bits [31:24] of the multiplier operand are all zero or all one.

•• In all other cases.

For Unsigned Instructions UMULL, UMLAL:

•• If bits [31:8] of the multiplier operand are all zero.

•• If bits [31:16] of the multiplier operand are all zero.

•• If bits [31:24] of the multiplier operand are all zero.

•• In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-27

ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32 x 32 = 64

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32 x 32 = 64

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32 x 32 + 64 = 64

where:

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

EXAMPLES

UMULL R1,R4,R2,R3 ; R4,R1:=R2×R3
UMLALS R1,R5,R2,R3 ; R5,R1:=R2×R3+R5,R1 also setting condition codes

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-28

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15 0

Cond

28 16 11122123

B

20

L Rn Rd

22

01 I P U OffsetW

26 2425

[15:12] Source/Destination Registers

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value

[11:0] Offset

Shift

Immediate

[11:0] Unsigned 12-bit immediate offset

11

11

Rm

[3:0] Offset register [11:4] Shift applied to Rm

[31:28] Condition Field

0

4 3 0

Figure 3-14. Single Data Transfer Instructions

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-29

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros.
Please see Figure 2-2.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-30

LDR from word aligned address

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

LDR from address offset by 2

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

Figure 3-15. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros.
Please see Figure 2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-31

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.

EXAMPLE:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N and I
are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-32

ASSEMBLER SYNTAX

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will
subtract 8 from
the offset value to allow for ARM7TDMI pipelining. In this case base write-back should
not be specified.

<Address>can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/–}Rm{,<shift>}]{!} offset of +/– contents of index register, shifted

by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/–}Rm{,<shift>} offset of +/– contents of index register, shifted

as by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the shift
amount by a register.

{!} Writes back the base register (set the W bit) if! is present.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-33

EXAMPLES

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are registers)
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3×4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-34

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15

Cond

28 16 11122123

0

20

L Rn Rd

[3:0] Offset Register

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U 0000W

2425

1 RmS H 1

8 7 6 5 4 3 0

Figure 3-16. Halfword and Signed Data Transfer with Register Offset

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-35

31 27 19 15

Cond

28 16 11122123

1

20

L Rn Rd

[3:0] Immediate Offset (Low Nibble)

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[11:8] Immediate Offset (High Nibble)

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U OffsetW

2425

1 OffsetS H 1

8 7 6 5 4 3 0

Figure 3-17. Halfword and Signed Data Transfer with Immediate Offset and Auto-Indexing

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is selected.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-36

HALFWORD LOAD AND STORES

Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM7TDMI register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behavior.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-37

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to 0 if it is a halfword boundary, (A[1]=1). The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behavior.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I. LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles.
S,N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STRH
instructions take 2N incremental cycles to execute.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-38

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/–}Rm]{!} offset of +/– contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/–}Rm offset of +/– contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this
case base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-39

EXAMPLES

LDRH R1,[R2,–R3]! ; Load R1 from the contents of the halfword address
; contained in R2–R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#–223 ; Load R8 with the sign extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign extended contents

; of the halfword address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED–HERE8)]; Store the halfword in R5 at address FRED
FRED

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-40

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 27 19 15

Cond

28 162123

S

20

L Rn

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

22

100 P U W

2425

Register list

24 0

Figure 3-18. Block Data Transfer Instructions

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-41

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified
base is required (W=1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value
of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been
overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

1 2

3 4

Rn R1

R1

R5

R1

R5

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-19. Post-Increment Addressing

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-42

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-20. Pre-Increment Addressing

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-21. Post-Decrement Addressing

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-43

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-22. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-44

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Abort during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

• Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

• The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S,N
and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-45

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2–R7,R10}).

{!} If present requests write-back (W=1), otherwise W=0.

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user bank
when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit

Pre-Increment Load LDMED LDMIB 1 1 1

Post-Increment Load LDMFD LDMIA 1 0 1

Pre-Decrement Load LDMEA LDMDB 1 1 0

Post-Decrement Load LDMFA LDMDA 1 0 0

Pre-Increment Store STMFA STMIB 0 1 1

Post-Increment Store STMEA STMIA 0 0 1

Pre-Decrement Store STMFD STMDB 0 1 0

Post-Decrement Store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After,
Increment Before, Decrement After, Decrement Before.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-46

EXAMPLES

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0–R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 ← (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 ← (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0–R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling
routine:

STMED SP!,{R0–R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0–R3,R15} ; Restore workspace and return.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-47

SINGLE DATA SWAP (SWP)

31 19 15

Cond

28 16 11122123

B

20

00 Rn Rd

[3:0] Source Register

[15:12] Destination Register

[19:16] Base Register

[22] Byte/Word Bit
0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition Field

22

00010 0000 Rm1001

27 8 7 4 3 0

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are “locked” together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-48

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are defined as sequential
(S-cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn Expressions evaluating to valid register numbers

EXAMPLES

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-49

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

31 2427

1111Cond Comment Field (Ignored by Processor)

28 23

[31:28] Condition Field

0

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed
value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected operating system may be
constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-50

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.

<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).

EXAMPLES

SWI ReadC ; Get next character from read stream.
SWI WriteI+"k” ; Output a "k" to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
• • •
Zero EQU 0

ReadC EQU 256
WriteI EQU 512

Supervisor ; SWI has routine required in bits 8–23 and data (if any) in
; bits 0–7. Assumes R13_svc points to a suitable stack

STMFD R13,{R0–R2,R14} ; Save work registers and return address.
LDR R0,[R14,#–4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0–7.
• • •
LDMFD R13,{R0–R2,R15}^ ; Restore workspace and return,

; restoring processor mode and flags.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-51

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The KS32C41000, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the KS32C41000.
These coprocessor instructions can be emulated by the undefined trap handler. Even though external
coprocessor can not be connected to the KS32C41000, the coprocessor instructions are still described here in full
for completeness. (Remember that any external coprocessor described in this section is a software emulation.)

31 2427 19 15

Cond CRm

28 16 111223 20

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register

[19:16] Coprocessor operand register

[23:20] Coprocessor operation code

[31:28] Condition Field

0CpCp#CRdCRn1110 CP Opc

8 7 5 4 3 0

Figure 3-25. Coprocessor Data Operation Instruction

Only bit 4 and bits 24 to 31 The coprocessor fields are significant to ARM7TDMI. The remaining bits are used by
coprocessors. The above field names are used by convention, and particular coprocessors may redefine the use
of all fields except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to
15) for each coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the
CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-52

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and I are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)
; on CR2 and CR3, and put the result in CR1.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-53

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessor's registers directly to
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

31 27 19 15

Cond

28 16 11122123

N

20

L Rn CRd

22

110 P U CP#W

2425

Offset

8 7 0

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance
N=0 could select the transfer of a single register, and N=1 could select the transfer of all the registers for context
switching.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-54

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old
value of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of
the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n–1)S + 2N + bI incremental cycles to execute, where:

n The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-55

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:
[Rn],<#expression offset of <expression> bytes
{!} write back the base register (set the W bit) if! is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

EXAMPLES

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-56

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 27 19 15

Cond

28 16 11122123 20

L CRn Rd

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Number

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register

[20] Load/Store Bit
0 = Store to coprocessor
1 = Load from coprocessor

[21] Coprocessor Operation Mode

[31:28] Condition Field

1110 CP Opc CP#

24

CRm1CP

8 7 5 4 3 0

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-57

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as sequential
(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bI +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)

MCR Move from ARM7TDMI register to coprocessor (L=0)

{cond} Two character condition mnemonic. See Table 3-2

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

Rd An expression evaluating to a valid ARM7TDMI register number

cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-58

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 27

Cond

28 25 24

011 xxxxxxxxxxxxxxxxxxxx 1 xxxx

5 4 3 0

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N and I are defined as sequential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-59

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly they
just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,# " "–1 ; Range test
MOVLS Rc,# "" ; IF Rc<= "" OR Rc=ASCII(127)

; THEN Rc:= "."

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-60

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide
routine follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Detection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-61

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32–1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bit in Rb lsb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; Carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)

 EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2^n–1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-62

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra×C, C a constant:

1. If C even, say C = 2^n×D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra×D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n×D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra×D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n×D–1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra×D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4×3–1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4×11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5×9 = 45

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-63

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-64

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decomposer inside the ARM7TDMI
core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

Move Shifted register

00

0

0 0 0

0 0 0

0 0 0

1

0

0

0 1 0

0

0

0

0

0

1

11

1

1

1

1

00

0 0 0

1

1

1

1

11

1

1

0

L

0

1

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

0 0 0

0

1 1

1 1

0 0

10

0

L

1 0 R

1 1 0

1 0 SP

1 L

L

S

H

0

0

1 B L

0 1 H

0 1 B

0 0 1

1 1 I Op

Op

Op

Op

Op

L 0

S 1

Offset5 Rs Rd

Rn/offset3

Rd

Rs Rd

Offset8

Rs

Rd/Hd

Rd

H1 H2 Rs/Hs

Rd

Word8

Rd

RbRo

Ro Rb

Rd

Offset5 Rb Rd

Rb RdOffset5

Rd

Rd

Word8

Word8

SWord7

Rb

Cond

Rlist

Rlist

Softset8

Value8

Offset11

Offset

Add/subtract

Move/compare/add/
subtract immediate

ALU operations

Hi register operations
/branch exchange

PC-relative load

Load/store with register
offset

Load/store with immediate
offset

Load/store sign-extended
byte/halfword

Load/store halfword

SP-relative load/store

Load address

Add offset to stack pointer

Push/pop register

Multiple load/store

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 3-29. THUMB Instruction Set Formats

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-65

OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

ADC Add with Carry Y – Y

ADD Add Y Y Y (1)

AND AND Y – Y

ASR Arithmetic Shift Right Y – Y

B Unconditional branch Y – –

Bxx Conditional branch Y – –

BIC Bit Clear Y – Y

BL Branch and Link – – –

BX Branch and Exchange Y Y –

CMN Compare Negative Y – Y

CMP Compare Y Y Y

EOR EOR Y – Y

LDMIA Load multiple Y – –

LDR Load word Y – –

LDRB Load byte Y – –

LDRH Load halfword Y – –

LSL Logical Shift Left Y – Y

LDSB Load sign-extended byte Y – –

LDSH Load sign-extended halfword Y – –

LSR Logical Shift Right Y – Y

MOV Move register Y Y Y (2)

MUL Multiply Y – Y

MVN Move Negative register Y – Y

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-66

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

NEG Negate Y – Y

ORR OR Y – Y

POP Pop register Y – –

PUSH Push register Y – –

ROR Rotate Right Y – Y

SBC Subtract with Carry Y – Y

STMIA Store Multiple Y – –

STR Store word Y – –

STRB Store byte Y – –

STRH Store halfword Y – –

SWI Software Interrupt – – –

SUB Subtract Y – Y

TST Test bits Y – Y

NOTES:
1. The condition codes are unaffected by the format 5, 12, and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-67

FORMAT 1: MOVE SHIFTED REGISTER

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[10:6] Immediate Vale

[12:11] Opcode
0 = LSL
1 = LSR
2 = ASR

Offset5

6 5 3 2

Rd0 0

13 12 11

Op Rs

Figure 3-30. Format 1

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OP THUMB Assembler ARM Equipment Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL #Offset5 Shift Rs left by a 5-bit immediate
value and store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR #Offset5 Perform logical shift right on Rs by
a 5-bit immediate value and store
the result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR
#Offset5

Perform arithmetic shift right on Rs
by a 5-bit immediate value and
store the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-68

FORMAT 2: ADD/SUBTRACT

15

0

14 10

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Vale

[9] Opcode
0 = ADD
1 = SUB

[10] Immediate Flag
0 = Register operand
1 = Immediate oerand

Rn/Offset3 Rd0 0

13 12 11

Op Rs

9 8

1 1 1

6 5 3 2 0

Figure 3-31. Format 2

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OP I THUMB Assembler ARM Equipment Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs, #Offset3 Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs, #Offset3 Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R0, R3, R4 ; R0 := R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6 := R2 – 6 and set condition codes.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-69

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 0

0

14 10

[7:0] Immediate Vale

[10:8] Source/Destination Register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

Offset8Rd0 0

13 12 11

Op

78

Figure 3-32. Format 3

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OP THUMB Assembler ARM Equipment Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit
immediate value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 Add 8-bit immediate value to contents of
Rd and place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 Subtract 8-bit immediate value from
contents of Rd and place the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

MOV R0, #128 ; R0 := 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 – 62
ADD R1, #255 ; R1 := R1 + 255 and set condition codes
SUB R6, #145 ; R6 := R6 – 145 and set condition codes

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-70

FORMAT 4: ALU OPERATIONS

15 0

0

14 10

[2:0] Source/Destination Register

[5:3] Source Register 2

[9:6] Opcode

56 3

Rd0 0

13 12 11

Op Rs0 0 0

9 2

Figure 3-33. Format 4

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 4 Instructions

OP THUMB Assembler ARM Equipment Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd := Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd := Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd – Rs – NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = – Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd – Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd := Rs × Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-71

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

EOR R3, R4 ; R3 := R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; Store the result in R5. Set condition codes ie R5 = – R3
CMP R2, R6 ; Set the condition codes on the result of R2 – R6
MUL R0, R7 ; R0 := R7 × R0 and set condition codes

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-72

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[6] Hi Operand Flag 2

[7] Hi Operand Flag 1

[9:8] Opcode

6 5 3 2

Rd/Hd0 0

13 12 11

Op Rs/Hs0 0 0

9 8 7

H1 H2

Figure 3-34. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op = 10 (MOV) is undefined, and should not
be used.

Table 3-12. Summary of Format 5 Instructions

Op H1 H2 THUMB assembler ARM equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8–15 to a
register in the range 0–7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0–7 to a
register in the range 8–15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8–15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0–7
with a register in the range 8–15. Set
the condition code flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8–15
with a register in the range 0–7. Set
the condition code flags on the result.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-73

Table 3-12. Summary of Format 5 Instructions (Continued)

Op H1 H2 THUMB assembler ARM equivalent Action

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range
8–15. Set the condition code flags on
the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the
range 8–15 to a register in the range
0–7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the
range 0–7 to a register in the range
8–15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers in
the range 8–15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state
change) to address in a register in the
range 0–7.

11 0 1 BX Hs BX Hs Perform branch (plus optional state
change) to address in a register in the
range 8–15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.
Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-74

EXAMPLES

Hi-Register Operations

ADD PC, R5 ; PC := PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 – R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

 •
•
ALIGN
CODE32
outofTHUMB ; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-75

FORMAT 6: PC-RELATIVE LOAD

15 0

0

14 10

[7:0] Immediate Value

[10:8] Destination Register

Word 80 0

13 12 11

Rd0 0

8 7

Figure 3-35. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the PC. Load the
word from the resulting address into Rd.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than the address
of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-76

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 L B

9 8

Ro0

Figure 3-36. Format 7

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-77

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0–7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-14. Summary of Format 7 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the contents of Rd at the
address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the byte value in Rd at the
resulting address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the contents of the address into
Rd.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the byte value at the resulting
address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 to R0.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-78

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

[2:0] Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag
0 = Operand not sing-extended
1 = Operand sing-extended

[11] H Flag

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 H S

9 8

Ro1

Figure 3-37. Format 8

OPERATION

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler
syntax is shown below.

Table 3-15. Summary of format 8 instructions

L B THUMB assembler ARM equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store halfword:

Add Ro to base address in Rb. Store bits
0–15 of Rd at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load halfword:

Add Ro to base address in Rb. Load bits
0–15 of Rd from the resulting address,
and set bits 16–31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:

Add Ro to base address in Rb. Load bits
0–7 of Rd from the resulting address,
and set bits 8–31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended halfword:

Add Ro to base address in Rb. Load bits
0–15 of Rd from the resulting address,
and set bits 16–31 of Rd to bit 15.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-79

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword
; found at the address formed by adding R2 to R4.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-80

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Offset Register

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flad
0 = Transfer word quantity
1 = Transfer byte quantity

15 0

0

14 10 6 5 3 2

Rd1 1

13 12 11

RbB L Offset5

Figure 3-38. Format 9

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-81

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-16.

Table 3-16. Summary of Format 9 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the contents of Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load
Rd from the address.

0 1 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the byte value in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding
together the value in Rb and Imm. Load
the byte value at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-82

FORMAT 10: LOAD/STORE HALFWORD

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb0 L Offset5

Figure 3-39. Format 10

OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Halfword Data Transfer Instructions

L THUMB assembler ARM equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and store
bits 0–15 of Rd at the resulting address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load bits
0–15 from the resulting address into Rd and
set bits 16–31 to zero.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit 0 set to 0) since the assembler places
#Imm >> 1 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed by
; adding 4 to R7. Note that the THUMB opcode will contain
; 2 as the Offset5 value.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-83

FORMAT 11: SP-RELATIVE LOAD/STORE

[7:0] Immediate Value

[10:8] Destination Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 0

13 12 11

Word 81 L Rd

78

Figure 3-40. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store. The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Store the contents of Rd at the
resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Load the word from the resulting
address into Rd.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #Imm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-84

FORMAT 12: LOAD ADDRESS

[7:0] 8-bit Unsigned Constant

[10:8] Destination Register

[11] Source
0 = PC
1 = SP

15 0

1

14 10

0 1

13 12 11

Word 80 SP Rd

78

Figure 3-41. Format 12

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

L THUMB assembler ARM equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value of the program
counter (PC) and load the result into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value of the stack
pointer (SP) and load the result into Rd.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R2, PC, #572 ; R2 := PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6 := SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-85

FORMAT 13: ADD OFFSET TO STACK POINTER

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

15 0

1

14 10

0 1

13 12 11

SWord 71 0 0

789 6

0 0 S

Figure 3-42. Format 13

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instruction

L THUMB assembler ARM equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, # -Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #Imm can be up to –/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #Imm to an 8-bit sign + magnitude number before placing it in field SWord7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #–104 ; SP (R13) := SP – 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S=1.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-86

FORMAT 14: PUSH/POP REGISTERS

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 1

13 12 11

Rlist1 L 0

789

1 R

Figure 3-43. Format 14

OPERATION

The instructions in this group allow registers 0–7 and optionally LR to be pushed onto the stack, and registers 0–7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be Full Descending.

Table 3-21. PUSH and POP Instructions

L B THUMB assembler ARM equivalent Action

0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto
the stack. Update the stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!,
{ Rlist, R14 }

Push the Link Register and the registers
specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the
registers specified by Rlist. Update the
stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} Pop values off the stack and load into
the registers specified by Rlist. Pop the
PC off the stack. Update the stack
pointer.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-87

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

PUSH {R0–R4,LR} ; Store R0,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-88

FORMAT 15: MULTIPLE LOAD/STORE

[7:0] Register List

[10:8] Base Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

1 0

13 12 11

Rlist0 L

78

Rb

Figure 3-44. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STMIA R0!, {R3–R7} ; Store the contents of registers R3–R7
; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-89

FORMAT 16: CONDITIONAL BRANCH

[7:0] 8-bit Signed Immediate

[11:8] Condition

15 0

1

14

1 0

13 12 11

SOffset 81

78

Cond

Figure 3-45. Format 16

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 2-23. The Conditional Branch Instructions

L THUMB assembler ARM equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or same)

0011 BCC label BCC label Branch if C clear (unsigned lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear (unsigned higher)

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-90

Table 2-23. The Conditional Branch Instructions (Continued)

L THUMB assembler ARM equivalent Action

1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or
same)

1010 BGE label BGE label Branch if N set and V set, or N clear and V
clear (greater or equal)

1011 BLT label BLT label Branch if N set and V clear, or N clear and V
set (less than)

1100 BGT label BGT label Branch if Z clear, and either N set and V set
or N clear and V clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V clear, or N
clear and V set (less than or equal)

NOTES
1. While label specifies a full 9-bit two's complement address, this must always be halfword-aligned (ie with bit 0 set to 0)

since the assembler actually places label >> 1 in field SOffset8.
2. Cond = 1110 is undefined, and should not be used.

Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

CMP R0, #45 ; Branch to over-if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
• ; the number of halfwords to offset.
•

over • ; Must be halfword aligned.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-91

FORMAT 17: SOFTWARE INTERRUPT

[7:0] Comment Field

15 0

1

14

1 0

13 12 11

Value 81

7810 9

1 1 1 1

Figure 3-46. Format 17

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB assembler ARM equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:
Move the address of the next instruction into LR,
move CPSR to SPSR, load the SWI vector address
(0x8) into the PC. Switch to ARM state and enter
SVC mode.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

SWI 18 ; Take the software interrupt exception.
; Enter Supervisor mode with 18 as the
; requested SWI number.

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-92

FORMAT 18: UNCONDITIONAL BRANCH

[10:0] Immediate Value

15 0

1

14

1 1

13 12 11

Offset110

10

0

Figure 3-47. Format 18

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

Table 3-25. Summary of Branch Instruction

THUMB assembler ARM equivalent Action

B label BAL label (halfword offset) Branch PC relative +/– Offset11 << 1, where label
is PC +/– 2048 bytes.

NOTE: The address specified by label is a full 12-bit two's complement address,
but must always be halfword aligned (ie bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

EXAMPLES

here B here ; Branch onto itself. Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
• ; Note that the THUMB opcode will contain the number of
•
• ; halfwords to offset.

jimmy • ; Must be halfword aligned.

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-93

FORMAT 19: LONG BRANCH WITH LINK

[10:0] Long Branch and Link Offset High/Low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

15 0

1

14

1 1

13 12 11

Offset1

10

H

Figure 3-48. Format 19

OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two's complement half-word offset specified by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-94

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

L THUMB assembler ARM equivalent Action

0 BL label none LR := PC + OffsetHigh << 12

1 temp := next instruction address

PC := LR + OffsetLow << 1

LR := temp | 1

EXAMPLES

BL faraway ; Unconditionally Branch to 'faraway'
next • ; and place following instruction

• ; address, ie "next", in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of halfwords to offset.

faraway • ; Must be Half-word aligned.
•

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-95

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n–1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by –2^n (–2, –4, –8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by –2^n–1 (–3, –7, –15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n–1, –2^n or –2^n–1} × 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) ; (2..5)
LSL Ra, Ra, #n ; MOV Ra, Ra, LSL #n

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-96

GENERAL PURPOSE SIGNED DIVIDE

This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or –1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with –1 (0×FFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB –1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or –1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with –1 (0×FFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB –1) to get abs value

;Save signs (0 or –1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l
MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the 'ones' value).

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-97

Now fixup the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = – 1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = – 1
SUB R1, R2
MOV pc, lr

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, a1
BEQ divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4
MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0
MOV pc, lr

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

3-98

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and
ARM code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

SUB a2, a1, #10
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1
ADDPL a1, a1, #1
ADDMI a2, a2, #10
MOV pc, lr

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-1

4 SYSTEM MANAGER

OVERVIEW

The S3C3410X System Manager has the following functionality:

• Arbitrate the bus usage requests from several master blocks, based on a fixed priority.

• Generate the necessary memory control signals for external memory access. For example, if a master block
such as DMA or the CPU generates an address which corresponds to a DRAM bank, the DRAM controller
inside System Manager should generate the necessary DRAM control signals (nRAS, nCAS, and so on).

• Support only the big-endian mode. The access to the internal register or the external memory should be done
based on the big-endian mode.

SYSTEM MANAGER REGISTER

The S3C3410X microcontroller has the SFRs, Special Function Register Set, to keep the system control
information of system manager, cache, DMA, UART, and so on. The SFRs have the SMRs, System Manager
Register Set, to configure the external memory map as well as the access-related option for SDRAM, DRAM,
SRAM, ROM and extra-I/O control.

By utilizing the SMR, user can specify the memory type, external bus width, access cycles, necessary control
signal timings(nRAS, nCAS, and so on), location of memory bank, and each memory bank size. The SMR can
provide(or accept) the information of control signals, address, and data which are required by external devices
during normal system operation. There are eleven registers to control memory bank (ROM, SRAM,
DRAM/SDRAM), extra-device control and DRAM refresh.

The S3C3410X can provide up to 128M bytes of address space and each bank can provide up to 16M bytes
memory space because each bank can have 24 address pins and 8-bit/16-bit data width.

The S3C3410X can also support two external I/O banks. These I/O banks are mapped into the SFR region. The
two external I/O bank can give the smart interface between S3C3410X and external I/O device, which will
improve the cost, PCB size, and reliability of system.

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-2

0x07FF0000

128 Mbytes
(Ext. Memory Space)

0x07FFFFFF

0x00010000

0x00000000

64 Kbytes

64 Kbytes

Undefined Region

Special Function Register

ROM Region
(Accessable Region)

Internal SRAM (NOTE)0x07FF0FFF

NOTE: If you use not cache but an internal SRAM as an internal memory, then
the SRAM area are from 0x07FF0000 to 0x07FF0FFF. Refer to 5-4 page.

Figure 4-1. S3C3410X Memory Map (Default Map after Reset)

The S3C3410X can support 128M-byte memory space, which means that the S3C3410X should have an
internal 27-bit system address bus. User can allocate the start address of bank by 64K-byte step from
0000000h to 7FFFFFFh. In other word, each bank can be located anywhere in the 128M-byte address
space. The SFRs(Special Function Register) Set should occupy the 64K-byte region and the start
address of normal memory bank should not be allocated in the region of SFR area. The region of SFR is
a kind of memory mapped one and it can not allow the sharing the region with other banks.

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-3

ADDRESS BUS GENERATION

The address bus of the S3C3410X is quite different from the general MCU's. Although the general MCU does not
use the A0 pin for 16-bit data bus width, the S3C3410X always uses the A0 pin regardless of data bus width. In
other word, A0 should be connected to the lowest address bit of memory regardless of 16-bit bus width or 8-bit
bus width. The bus width of bank 0(Boot ROM bank) can be configured by external pin(TEST[1:0]) and the bus
width of other bank should be configured by writing the option information in SMRs. The memory controller in
System Manager can generate A0 suitable for 8-bit bus width or 16-bit bus width, automatically. When an 8-bit
data bus is selected, the resolution of address bus will be a byte and when a 16-bit is selected, the resolution of
address bus will be a half-word.

Data Bus Width External Address Pins : A[23:0] Accessible Memory Size

8-bit SA[23:0] (Internal) 16 M bytes

16-bit SA[24:1] (Internal) 16 M half-word (32 M bytes)

24-bit

8-bit

16-bit

External address bus
A[23:0]

Data bus width configuration
(8-bit/16-bit)

SA[23:0]

24-bit

24-bit

SA[24:1]

Internal Address Bus

Figure 4-2. External Address Bus Generation (A[23:0])

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-4

nWE(NOT WRITE ENABLE)/nWBE[1:0](NOT WRITE BYTE ENABLE)

The nWE is the signal to indicate that the current bus cycle is for writing the data into the memory. But, if user
want to write the byte data through 16-bit bus into the memory, there should be byte selection option. For
example, user should have CAS0 and CAS1 signal in case of EDO DRAM. Similarly with EDO DRAM case, there
should be nWBE[1:0] to select the byte. The x16 SRAM has nWE for indication of write cycle and LB(Lower Byte
Selection)/UB(Upper Byte Selection) for selecting the byte. In this case, nWE from S3C3410X should be
connected to WE of x16 SRAM, and nBE[0] and nBE[1] should be connected to LB and UB for the byte selection.
Differently from x16 SRAM, in case of x16 SRAM with two x8 SRAM, nWBE[0] and nWBE[1] should be
connected to the WE of SRAM, respectively.
In case of SDRAM attachment, nWE should be connected to WE of SDRAM and nWBE[1]/nWBE[0] should be
connected to DQM[1]/DQM[0].

If user want x8 bus width for external memory access, please have following connection. In case of x8 SRAM,
nWBE[0], not nWE, should be connected to the WE of SRAM. In case of x8 SDRAM, nWE and nWBE[0] should
be connected to the WE and DQM of SDRAM.

There is certain case that no more byte access is needed. For example, x16 Flash Memory does not need byte
access through 16-bit bus when user need the programming the data in the flash memory. In this case, please
use nWBE[0] instead of nWE to indicate that the current bus cycle is a write cycle

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-5

nCS1 Bank 1

Bank 0

Lower
Byte

nCS0

nBE1

nBE0

x16 SRAM

Upper
Byte

RAS1 Bank 1

Bank 0

Lower
Byte

RAS0

CAS1

CAS0

DRAM

Upper
Byte

nWBE0 nWE nWE nWE

Figure 4-3. DRAM(x16) and SRAM(x16) Bank Configuration (For x16 Data Bus)

nWBE0

nWBE1

x8 SRAM

nCS0

Lower Byte

Upper Byte

Figure 4-4. Two SRAM(x8) Configuration (For x16 Data Bus)

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-6

SYSTEM MANAGER & MEMORY CONTROLLER SPECIAL FUNCTION REGISTERS

SYSTEM REGISTER ADDRESS CONFIGURATION REGISTER (SYSCFG)

The SMRs (System Manager Registers) have the SYSCFG (System Register Address Configuration Register),
which determines the start address(base point) of SFR(Special Function Register) files. The SYSCFG contains
the start address of SFR. If the reset value of SYSCFG is fff1h, the SYSCFG is mapped to the address of
07FF0000h. To determine the start address, pick up the SYSCFG[14:4] and take 16-bit shift left. In this case,
SYSCFG[14:4] is 7FFh and (7FFh << 16) is 07FF0000h, which is the start address of SFR.

Register Offset
Address

R/W Description Reset
Value

SYSCFG 0x1000 R/W Special function register to determine the start address 0xfff1

SYSCFG Bit Description Initial State

ST [0] Stall Enable: When set to 1, Stall operation is enabled. The role
of stall option is to insert one cycle wait for the non-sequential
access. Originally, this feature was adopted to take care of the
internal timing issue. So, we are recommending ST=0 to get the
higher performance.
0 = Disable; It is recommended for faster operation
1 = Enable; Insert an internal wait inside the core logic when
 non-sequential memory accesses occur.

1

CE [1] Cache Enable: When set to 1, internal Cache will be enabled.
When user want to define the internal SRAM, not cache, the
cache should be disabled. If the performance is not critical, user
can have cache disable option to reduce the current
consumption.
0 = Cache disable
1 = Cache enable

0

WE [2] Write Buffer Enable: When set to 1, the write buffer operation is
enabled. To get the higher performance, user should enable the
write buffer. The disabling write buffer is for test purpose.
0 = Write buffer operation disable
1 = Write buffer operation enable

0

Reserved [3] Reserved 0

SFRSA [14:4] SYSCFG Address (SFRs Start Address): To determine the
start address of SFR, this SFRSA field should be 16-bit left
shifted. In other word, the start address of SFR is
(SFRSA << 16).

7ff

CM [16:15] Cache Mode: Internal 4KB memory can be configured as 4KB
cache, 2KB Cache/2KB SRAM, or 4KB SRAM.
00 = Half cache enable (2KB cache, 2KB internal SRAM)
01 = Full cache enable (4KB cache)
10 = Disable cache(4KB internal SRAM)
11 = Not used

01

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-7

SYSCFG Bit Description Initial State

AME [17] Address Mux Enable: This bit determines whether or not to use
the Multiplexed Address Mode. The Multiplexed Address Mode
can generate the address for A[23:16] by using A[15:8] pins. In
Normal Mode, the S3C3410X can support the dedicated pins for
A[23:16]. In case of Multiplexed Address Mode, A[23:16] pins can
be used as I/O ports. Because A[15:8] pins output address data
for A[23:16] and A[15:8] by using latch device, as shown in
Figure 4-5 and Figure 4-14. This is option for the pin usage
because there are many multiplexed pins in S3C3410X.
0 = Normal Mode 1 = Multiplexed Address mode

0

MT0 [19:18] Memory Type 0: This field determines memory type for bank6
00 = ROM/Flash/SRAM 01 = FP DRAM
10 = EDO DRAM 11 = Sync. DRAM

00

MT1 [21:20] Memory Type 1: This field determines memory type for bank7
00 = ROM/Flash/SRAM 01 = FP DRAM
10 = EDO DRAM 11 = Sync. DRAM

00

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-8

BANK TIMING CONTROL REGISTER (BANKCONx : nCS0 – nCS5)

Register Offset
Address

R/W Description Reset
Value

BANKCON0 0x2000 R/W Bank 0 timing control register (for ROM/Flash) 0x00200070

BANKCON1 0x2004 R/W Bank 1 timing control register (for ROM/Flash/SRAM) 0x0

BANKCON2 0x2008 R/W Bank 2 timing control register (for ROM/Flash/SRAM) 0x0

BANKCON3 0x200c R/W Bank 3 timing control register (for ROM/Flash/SRAM) 0x0

BANKCON4 0x2010 R/W Bank 4 timing control register (for ROM/Flash/SRAM) 0x0

BANKCON5 0x2014 R/W Bank 5 timing control register (for ROM/Flash/SRAM) 0x0

BANKCONx Bit Description Initial State

DBW [0] Data Bus Width: This bit determines the physical data bus width
for bankx (bank1,2,3,4,and 5). The physical data bus width of
bank0 depends on the configuration of TEST[1:0] pins.
0 = 8-bit 1 = 16-bit

0

PMC [2:1] These bits determines the page mode configuration for ROM
access (Single mode, 4 data page mode, 8 data page mode, and
16 data page mode).
00 = 1 Data 01 = 4 Data 10 = 8 Data 11 = 16 Data

00

SM [3] In certain x16 SRAM, there are byte selection signals such as LB
(Lowe Byte) and UB (Upper Byte). In this case, nWE from
S3C3410X should be connected to WE of SRAM and nWBE[1:0]
from S3C3410X should be connected to UB/LB of SRAM.
0 = Ordinary 1 = x16 type SRAM

0

Tacc [6:4] Determine the number of Access Cycle (Tacc). Please refer the
timing diagram.
000 = Disable 001 = 2 Clock 010 = 3 Clock 011 = 4 Clock
100 = 5 Clock 101 = 6 Clock 110 = 7 Clock 111 = 10 Clock

111

Tacp [8:7] Determine the number of Page mode access cycle @ page mode
(Tacp). Please refer the timing diagram.
00 = 5 Clock 01 = 2 Clock 10 = 3 Clock 11 = 4 Clock

00

Reserved [9] Reserved 0

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-9

BANKCONx Bit Description Initial State

BAP [20:10] Memory Bank Base Address Pointer:
This 11-bit value corresponds to the upper 11 bits from the total
27-bit system address bus. It indicates the start address of the
corresponding memory bank(Bankx), based on 64K-byte units.
The base address pointer value is calculated as follows:

Base_Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).

If BAP is same with EAP, the corresponding memory bankx will
be disabled.

00000000000b

EAP [31:21] Memory Bank End Address Pointer:
This 11-bit value corresponds to the upper 11 bits from the total
27-bit system address bus. To determine the EAP, please refer
the below equation :

End_Address_Pointer = (End_Address + 1) / 10000h.

(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16). In this case, End_Address means the end address
of corresponding memory bank by byte address unit, not half-
word or word address unit.

00000000000b

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-10

BANK TIMING CONTROL REGISTER (BANKCONx: nRAS0 – nRAS1)

Register Offset
Address

R/W Description Reset
Value

BANKCON6 0x2018 R/W Bank 6 control register (for FP/EDO/SDRAM/ROM/Flash/SRAM) 0x0

BANKCON7 0x201c R/W Bank 7 control register (for FP/EDO/SDRAM/ROM/Flash/SRAM) 0x0

NOTE: BANKCON6 and 7 register can have dual configuration, depending on the MT field in SYSCFG register. In other
word, BANKCON6 and 7 have the same configuration with BANKCON1,2,3,4 and 5 when MT=00, or BANKCON6
and 7 have the configuration on DRAM(FP, EDO)/SDRAM when MT=01, 10, and 11.

BANKCONx Bit Description Initial State

Memory Type = ROM or SRAM [MT=00 in SYSCFG]

DBW [0] Data Bus Width: This bit determines the physical data bus width
for bankx (bank6 and 7)
0 = 8-bit 1 = 16-bit

0

PMC [2:1] These bits determines the page mode configuration for ROM
access (Single mode, 4 data page mode, 8 data page mode, and
16 data page mode).
00 = 1 Data 01 = 4 Data 10 = 8 Data 11 = 16 Data

00

SM [3] In certain x16 SRAM, there are byte selection signals such as LB
(Lowe Byte) and UB (Upper Byte). In this case, nWE from
S3C3410X should be connected to WE of SRAM and nWBE[1:0]
from S3C3410X should be connected to UB/LB of SRAM.
0 = Ordinary 1 = x16 type SRAM

0

Tacc [6:4] Determine the number of Access Cycle (Tacc). Please refer the
timing diagram.
000 = Disable 001 = 2 Clock 010 = 3 Clock 011 = 4 Clock
100 = 5 Clock 101 = 6 Clock 110 = 7 Clock 111 = 10 Clock

000

Tacp [8:7] Determine the number of Page mode access cycle @ page mode
(Tacp). Please refer the timing diagram.
00 = 5 Clock 01 = 2 Clock 10 = 3 Clock 11 = 4 Clock

00

Reserved [9] Reserved 0

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-11

BANKCONx Bit Description Initial State

BAP [20:10] Memory Bank Base Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. It indicates the start address of the corresponding
memory bank(Bankx), based on 64K-byte units. The base
address pointer value is calculated as follows:

Base_Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).

If BAP is same with EAP, the corresponding memory bankx will
be disabled

00000000000b

EAP [31:21] Memory Bank End Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. To determine the EAP, please refer the below
equation :

End_Address_Pointer = (End_Address + 1) / 10000h.

(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16). In this case, End_Address means the end address
of corresponding memory bank by byte address unit, not half-
word or word address unit.

00000000000b

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-12

Memory Type = FP DRAM [MT=01 in SYSCFG] or EDO DRAM [MT=10 in SYSCFG]

DBW [0] Data Bus Width: This bit determines the physical data bus width
for bankx (bank6 and 7)
0 = 8-bit 1 = 16-bit

0

CAN [2:1] Column Address Number for DRAM (FP and EDO DRAM).
00 = 8-bit 01 = 9-bit
10 = 10-bit 11 = 11-bit

00

Tcp [3] CAS Pre-charge Time. Please refer the timing diagram.
0 = 1 Clock 1 = 2 Clock

0

Tcas [6:4] CAS Pulse Width. Please refer the timing diagram.
000 = 1 Clock 001 = 2 Clock 010 = 3 Clock
011 = 4 Clock 100 = 5 Clock 101 = Not used
110 = Not used 111 = Disable

000

Trc [7] RAS to CAS Delay Time. Please refer the timing diagram.
0 = 1 Clock 1 = 2 Clock

0

Trp [9:8] RAS Pre-charge Time. Please refer the timing diagram.
00 = 1 Clock 01 = 2 Clock
10 = 3 Clock 11 = 4 Clock

00

BAP [20:10] Memory Bank Base Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. It indicates the start address of the corresponding
memory bank(Bankx), based on 64K-byte units. The base
address pointer value is calculated as follows:

Base_Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).

If BAP is same with EAP, the corresponding memory bankx will
be disabled

00000000000b

EAP [31:21] Memory Bank End Address Pointer:

This 11-bit value corresponds to the upper 11 bits from the total
27-bit system address bus. To determine the EAP, please refer
the below equation :

End_Address_Pointer = (End_Address + 1) / 10000h.

(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16). In this case, End_Address means the end address
of corresponding memory bank by byte address unit, not half-
word or word address unit.

00000000000b

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-13

Memory Type = Sync. DRAM [MT=11 in SYSCFG]

DBW [0] Data Bus Width : This bit determines the physical data bus
width for bankx(bank6 and 7)
0 = 8-bit 1 = 16-bit

0

CAN [2:1] Column Address Number of SDRAM.
00 = 8-bit 01 = 9-bit
10 = 10-bit 11 = 11-bit

00

Reserved [6:3] Reserved 0000

Trc [7] RAS to CAS Delay Time. Please refer the timing diagram.
0 = 1 Clock 1 = 2 Clock

0

Trp [9:8] RAS Pre-charge Time. Please refer the timing diagram.
00 = 1 Clock 01 = 2 Clock
10 = 3 Clock 11 = 4 Clock

00

BAP [20:10] Memory Bank Base Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. It indicates the start address of the corresponding
memory bank(Bankx), based on 64K-byte units. The base
address pointer value is calculated as follows:

Base_Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).

If BAP is same with EAP, the corresponding memory bankx will
be disabled

00000000000b

EAP [31:21] Memory Bank End Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. To determine the EAP, please refer the below
equation:

End_Address_Pointer = (End_Address + 1) / 10000h.

(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16).

In this case, End_Address means the end address of
corresponding memory bank by byte address unit, not half-word
or word address unit.

00000000000b

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-14

EXTERNAL DEVICE CONTROL REGISTERS (EXTCONn)

The S3C3410X can support the connection with two external I/O devices without any additional logic. It is very
cost effective, because the additional address decoding logic is not necessary. The smart connection between
S3C3410X and external I/O device can improve the cost, PCB size, and reliability of system. Differently from the
normal memory banks (8 memory banks in S3C3410X), S3C3410X defines the external I/O banks in SFR
(Special Function Register), EXTPORT, EXTDAT0, and EXTDAT1. EXTDAT0 and EXTDAT1 have 64 bytes
addressing region, respectively. To read the data from the external I/O device, you should execute the load
instruction by issuing the address (SFR start address + I/O bank offset), EXTPORT, EXTDAT0 or EXTDAT1.
Then, the data will be latched in the data register. To write the data into the external I/O device, you should
execute the store instruction by issuing the address (SFR start address + I/O bank offset), EXTPORT, EXTDAT0
or EXTDAT1. Then, the data will be written into the selected address, and the data will be written into the external
I/O device. These operation is automatically executed by the memory controller.

Register Offset
Address

R/W Description Reset
Value

EXTCON0 0x2030 R/W Extra device control register 0 (for external output port) 0x0

EXTCON1 0x2034 R/W Extra device control register 1 (for external chip selection) 0x0

EXTCONx Bit Description Initial State

DW [1:0] Data Bus Width: This bit determines the physical data bus width
for EXTBANKx (External bank0 and 1)
00 = Disable Bank 01 = 8-bit
10 = 16-bit 11 = Not used

00

Tcos [4:2] Set-up Time of nECS before nOE. Please refer the timing
diagram.
000 = 0 Clock 001 = 1 Clock
010 = 2 Clock 011 = 3 Clock
100 = 4 Clock 101 = 5 Clock
110 = 6 Clock 111 = 7 Clock

000

Tcoh [10:8] Hold Time of nECS after nOE. Please refer the timing diagram.
000 = 0 Clock 001 = 0 Clock
010 = 2 Clock 011 = 3 Clock
100 = 4 Clock 101 = 5 Clock
110 = 6 Clock 111 = 7 Clock

000

Tacc [13:11] Access Times (nOE low time)
000 = 0 Clock 001 = 2 Clock
010 = 3 Clock 011 = 4 Clock
100 = 5 Clock 101 = 6 Clock
110 = 7 Clock 111 = 8 Clock

000

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-15

EXTERNAL OUTPUT PORT REGISTER (EXTPORT)

You can use an external output latch device as an output port without any additional address logic for decoding
logic, because S3C3410X have the nWREXP pin. When you write any data to EXTPORT register, nWREXP pin
outputs a write strobe signal to interface with an external output latch device for latching the output data. That is,
the access signal to the external output latch device is controlled by writing any data to EXTPORT register. For
example, if you write 0xff to EXTPORT, memory controller outputs a write strobe signal in nWREXP pin and 0xff
in data bus. At this time, the access time is controlled by the extra device control register, EXTCON0 only. (Refer
to Figure 4-21)

When MDS mode is selected, this nWREXP pin is used as a write strobe signal for an external output latch,
which is emulated for port 7 output.

Register Offset Address R/W Description Reset Value

EXTPORT 0x203e R/W External Port Data register 0x0

EXTERNAL CHIP SELECTION DATA REGISTER (EXTDATX)

You can directly access to the external device as external memory without any additional address decoding logic
because S3C3410X have the external device control logic, nECS0 and nECS1 pins. These pins output the
external device selection signals. External device is accessed by the memory controller when the data is
read/write from/to EXTDAT0 or EXTDAT1. That is, if you read/write the data from/to EXTDAT0 or EXTDAT1, the
memory controller automatically outputs nECS0 or nECS1, the selected address and data. For example, if you
write 0xff to 0x206c in EXTDAT0, memory controller outputs nECS0 signal, 0x206c in address bus and 0xff in
data bus. At this time, the access time of EXTDAT0 and EXTDAT1 are controlled by the extra device control
register1, EXTCON1 only. (Refer to Figure 4-21)

When P2.7 or P3.7 is used as a normal input/output mode, nECS0 or nECS1 can not support extra chip
selection.

Register Offset Address R/W Description Reset Value

EXTDAT0 0x202c R/W Extra chip selection data register 0 –

0x206c

0x20ac

0x20ec

0x212c
:
:

0x2fec

EXTDAT1 0x202e R/W Extra chip selection data register 1 –

0x206e

0x20ae

0x20ee

0x212e
:
:

0x2fee

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-16

DRAM/SDRAM SELF REFRESH CONTROL REGISTER (REFCON)

Register Offset
Address

R/W Description Reset
Value

REFCON 0x2020 R/W DRAM/SDRAM refresh control register 0x1

REFCON Bit Description Initial State

VSMR [0] Validity of Special Memory Register (SMR):

Whenever CPU access one of system manager registers(SMR),
VSMR bit will be cleared automatically and all memory bank will
be disabled. To re-activate the memory bank, VSMR bit should
be set to 1 by using STMIA instruction(Data in the CPU registers
can be stored into the memory or memory mapped register by
single instruction). In other word, user should update the
necessary configuration in SMR as well as setting VSMR bit in
REFCON register, simultaneously. To do the simultaneous
updating, user should use the STMIA instruction, which can
transfer the CPU register data into SMR. The last data transfer
from CPU register should be data transfer to REFCON register to
set the VSMR bit.
0 = Not accessible to memory bank
1 = Accessible to memory bank

1

RC [11:1] Refresh Interval (Refresh Count): This RC field determine the
DRAM refresh period by below equation.

Refresh Period = (211 – refresh count + 1) / MCLK
Ex) If refresh period is 15.6us and MCLK is 33MHz, the refresh
count should be as follows:

Refresh Count = 211 + 1 – 33 x 15.6 = 1019 = 1111111011b

00000000000b

REN [12] Refresh Enable: If Bank 6 and/or Bank 7 are configured to have
DRAM bank by MT[1:0] field in SYSCFG register, this bit has
following option.
0 = Disable DRAM refresh.
1 = Enable DRAM refresh.

If Bank 6 and/or Bank 7 are configured to have SDRAM bank by
MT[1:0] field in SYSCFG register, this bit has following option.
0 = Disable SDRAM auto-refresh.
1 = Enable SDRAM auto refresh.

0

Tch [15:13] CAS Hold Time. Please refer the timing diagram.
000 = 1 Clock 001 = 2 Clock 010 = 3 Clock
011 = 4 Clock 100 = 5 Clock Other = Not used

000

Tcsr [16] CAS Set-up Time. Please refer the timing diagram.
0 = 1 Clock 1 = 2 Clock

0

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-17

MEMORY ACCESS AND I/O TIMING DIAGRAM

CLK

A[15:8]

nAS

nCSx

nOE

DATA
(Write)

DATA
(Read)

Tash = 0.77ns (nAS to A hold-time) @ TYP condition

When SRAM/ROM interface and enables address mux
A[15:8] outputs upper address during 1-cycle.
At this time, nAS is enabled during 1-cycle.

The nAS signal occurs only in case the current upper address is changed
from the previous one.
(That is to say, A[23:16] is different from the previous A[23:16].)

When nAS occurs, nOE and nWBE[1:0] signals are delayed for 1-
cycle, but, the nCSx is enabled. When upper address
outputs, data(write) is enabled. But data(read) is delayed for 1-cycle
because nOE is delayed.

nWBE

Lower Address +1Lower Address
Upper

Address

No upper address, if upper address is same.

Figure 4-5. S3C3410X Multiplexed Address Mode Timing Diagram

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-18

Tacp

MCLK

A[23:0]

nCSx

nOE

nWBE

DATA
(Write)

DATA
(Read)

Tacc

Tacc = 4 cycles, Tacp = 3 cycles

Figure 4-6. S3C3410X nCS Timing Diagram

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-19

Row
Address

MCLK

ADDR

nRASx

nCASx

nOE

nWE

Data(R)
@FP

Data(R)
@EDO

Data
(Write)

Trp

Trcd Tcas Tcp

Column
Address

Column
Address

Column
Address

Column
Address

Trp = 1 cycle, Trcd = 1 cycle, Tcas = 1 cycle, Tcp = 1 cycle

Figure 4-7. S3C3410X DRAM Timing Diagram

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-20

Da Db Dc Dd De

Ca Cb Cc Cd CeRA

RA

BA BA BA BA BABABA

SCLK

SCKE

nSCS

nSRAS

nSCAS

ADDR

BA

ADDR

nWE

DATA
(CL=2)

Bank
Precharge

Row
Active

Write Raed (CL = 2 Cycles, BL = 1 Cycle)

Trcd

Trp

Trp = 2 cycles, Trcd = 2 cycles, CL = 2 cycles

Figure 4-8. S3C3410X SDRAM Timing Diagram

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-21

MCLK

ADDR

nCSx

nOE

nWE

nWAIT

Data
(Read)

Data
(Write)

Check the nWAAIT signal

Tacc External Wait

Fetch Data

Tacc = 3 cycles, nWAIT = 3 cycles

Figure 4-9. S3C3410X nCS Timing Diagram with nWAIT

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-22

MCLK

ADDR

nECS0
or

nECS1

nOE

nWBE0
or

nWBE1

nWAIT

Data
(Read)

Data
(Write)

Check the nWAAIT signal

Tacc External Wait

Fetch Data

Tcos = 2 cycles, Tacc = 3 cycles, Tcoh = 1 cycle, nWAIT = 2 cycles

Tcos

Tcoh

Figure 4-10. S3C3410X nECS Timing Diagram with nWAIT

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-23

MEMORY INTERFACE SIGNAL CONNECTION METHOD

Pin Name Memory Type Description

nOE Any type Memory read strobe signal

nWBE0 Single ×8 Flash ROM/EEPROM/DRAM/SRAM Memory write strobe signal

Two ×8 Flash ROM/EEPROM/DRAM/SRAM Memory lower byte write strobe signal

Single ×16 SRAM Memory lower byte signal

nWBE1 Two ×8 Flash ROM/EEPROM/DRAM/SRAM Memory upper byte write strobe signal

Single ×16 SRAM Memory upper byte signal

nWE ×16 SRAM/SDRAM Memory write strobe signal

MEMORY CONNECTION EXAMPLE

Memory Configuration Type MCU Pin Memory Pin

×8/×16 ROM (MCU data bus: ×8/×16) nOE nOE

Single x8 Flash ROM/EEPROM or single x8 SRAM nOE nOE

(MCU data bus: ×8) nWBE0 nWE

Two x8 Flash ROM/EEPROM or two ×8 SRAM nOE nOE

(MCU data bus: ×16) nWBE0 nWE of lower byte

nWBE1 nWE of upper byte

×16 SRAM nOE nOE

(MCU data bus: ×16) nBE0 nLB

nBE1 nUB

nSWE nWE

Single ×8 DRAM VDD nOE

(MCU data bus: ×8) nRAS0 nRAS

nCAS0 nCAS

nWBE0 nWE

Two ×8 DRAM VDD nOE

(MCU data bus: ×16) nRAS0 nRAS

nCAS0 nCAS of lower byte

nCAS1 nCAS of upper byte

nWBE0 nWE

Single ×16 DRAM VDD nOE

(MCU data bus: ×16) nRAS0 nRAS

nCAS0 nLCAS

nCAS1 nUCAS

nWBE0 nWE

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-24

Memory Configuration Type MCU Pin Memory Pin

Two ×16 DRAM VDD nOE

(MCU data bus: ×16) nRAS0 nRAS of lower bank

nRAS1 nRAS of upper bank

nCAS0 nLCAS

nCAS1 nUCAS

nWBE0 nWE

Single ×8 SDRAM nOE nOE

(MCU data bus: ×8) nSCS nSCS

nSRAC nSRAC

nSCAS nSCAS

DQM0 DQM

nWE nWE

SCKE SCKE

SCLK SCLK

Two ×8 SDRAM nOE nOE

(MCU data bus: ×16) nSCS nSCS

nSRAC nSRAC

nSCAS nSCAS

DQM0 DQM of lower byte

DQM1 DQM of upper byte

nWE nWE

SCKE SCKE

SCLK SCLK

Single ×16 SDRAM nOE nOE

(MCU data bus: ×16) nSCS nSCS

nSRAC nSRAC

nSCAS nSCAS

DQM0 LDQM

DQM1 UDQM

nWE nWE

SCKE SCKE

SCLK SCLK

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-25

MEMORY CONFIGURATION EXAMPLES

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

64KB
ROM

(EEP/EPROM)

8

8

VDD

nWE

A[7:0]
8

A[15:8]

D[7:0]

A[7:0]

nOE
nCS

Figure 4-11. 64K ×× 8 ROM Memory Only

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

64KB
ROM

(EEP/EPROM)

8

8

VDD

nWE

Program
Memory

16KB
ROM

A[7:0]
8

nCS

A[15:8]

D[15:8]

A[7:0]

nOE

A[15:8]

D[7:0]

A[7:0]

nOE
nCS

D[15:8]
8

VDD

nWE

Figure 4-12. 64K ×× 16 ROM Memory Only

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-26

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

64KB
ROM

(EEP/EPROM)

8

8

VDD

nWE

Data
Memory

16KB
SRAM

(EEP/Flash
ROM)

nCS1
nWBE0 nWE

A[7:0]
8

nCS

A[15:8]

D[7:0]

A[7:0]

nOE

A[15:8]

D[7:0]

A[7:0]

nOE
nCS

Figure 4-13. 64KB ×× 8 Program ROM & 64KB ×× 8 Data Memory

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory
16MB
ROM

(EEP/EPROM)

8

8

VDD

nWE

Data
Memory
16MB
SRAM

(EEP/Flash
ROM)

nCS1
nWBE0 nWE

A[7:0]
8

nCS

A[23:16]

A[15:8]

D[7:0]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

A[7:0]

nOE
nCS

8-
bi

t L
at

ch

nAS

Figure 4-14. 16MB ×× 8 Program Memory & 16MB ×× 8 Data Memory

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-27

A[23:16]
(Port 1)

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory
16MB
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory
16MB
SRAM

(EEP/Flash
ROM)

nCS1
nWBE0 nWE

A[7:0]
8

nCS

A[23:16]

A[15:8]

D[7:0]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

A[7:0]

nOE
nCS

Figure 4-15. 16MB ×× 8 Program Memory & 16MB ×× 8 Data Memory

A[23:16]
(Port 4)

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory
16MB
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory
16MB
SRAM

(EEP/Flash
ROM)

nCS1
nWBE0 nWE

A[7:0]
8

nCS

A[23:16]

A[15:8]

D[7:0]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

A[7:0]

nOE
nCS

Figure 4-16. 16MB ×× 8 Program Memory & 16MB ×× 8 Data Memory

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-28

A[23:16]

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

8M × 16-bit
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory

8M × 8-bit
SRAMD[15:8]

nCS1
nWBE0

nCS

A[7:0]
8

nWBE1

8

nWE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE
nCS

nCS
nWE

Figure 4-17. 8MB ×× 16 Program Memory & two 8MB ×× 8 Data Memory

A[23:16]

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

8M × 16bit
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory

8M × 16bit
SRAM

D[15:8]

nCS1
nWBE0 nLB

A[7:0]
8

nWBE1

nCS

8

nUB
nWEnSWE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE
nCS

Figure 4-18. 8MB ×× 16 Program Memory & 8MB ×× 16 Data Memory (SRAM)

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-29

A[23:16]

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

8M × 16bit
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory
4M × 8bit

DRAM

D[15:8]

nRAS

nWBE0

nRAS

A[7:0]
8

8

nWE

A[11:8]

D[7:0]

D[15:8]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE
nCS

nRAS

nWE

nCAS

nCAS

nCAS0
nCAS1

Figure 4-19. 8MB ×× 16 Program Memory & two 4MB ×× 8 Data Memory (DRAM)

A[23:16]

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

8M × 16bit
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory

4M × 16bit
DRAM

D[15:8]

nRAS

nWBE0

nRAS

A[7:0]
8

8

nWE

A[11:8]

D[7:0]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE
nCS

nLCASnCAS0
nCAS1 nUCAS

D[15:8]

Figure 4-20. 8MB ×× 16 Program Memory & 4MB ×× 16 Data Memory (DRAM)

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-30

A[23:16]

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

8M × 16bit
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory

4M × 16bit
DRAM

D[15:8]

nRAS1

nWBE0

nRAS

A[7:0]
8

8

nWE

A[11:8]

D[7:0]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE
nCS

nRAS

nWE

nCAS0
nCAS1

nLCAS
nUCAS

nLCAS
nUCAS

nRAS2

D[15:8]

Figure 4-21. 8MB ×× 16 Program Memory & two 4MB ×× 16 Data Memory (DRAM)

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-31

A[23:16]

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

8M × 16bit
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory
2M × 8bit

with 4 Banks
SDRAM

D[15:8]

nSCS0 nCS

A[7:0]
8

8

A[11:8]

D[7:0]

D[15:8]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE
nCS

nRASnSRAS
nCASnSCAS

nWE nWE

A[13:12] BA[1:0]

DQM0 DQM0
SCLK SCLK
SCKE SCKE

DQM1DQM1

Figure 4-22. 8MB ×× 16 Program Memory & two 2MB ×× 8 with 4 Banks SDRAM

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-32

A[23:16]

A[15:8]

D[7:0]

nOE
nCS0

S3C3410X

Program
Memory

8M × 16bit
ROM

(EEP/EPROM)

8

8

8

VDD

nWE

Data
Memory

1M × 16bit
with 4 Banks

SDRAM

D[15:8]

nSCS0 nCS

A[7:0]
8

8

A[11:8]

D[7:0]

D[15:8]

A[7:0]

nOE

A[23:16]

A[15:8]

D[7:0]

D[15:8]

A[7:0]

nOE
nCS

nRASnSRAS
nCASnSCAS

nWE nWE

A[13:12] BA[1:0]

DQM0 LDQM

SCLK SCLK
SCKE SCKE

nCSnSCS1

DQM1 UDQM

Figure 4-23. 8MB ×× 16 Program Memory & two 1MB ×× 16 with 4 Banks SDRAM

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

4-33

74HCT374
74HCT574

nLE

Servo
Processor

nOE
nWR
nCS

Servo
Processor

nOE
nWR
nCS

8 8
D[7:0]

nOE
nWBE0
nECS0

nECS1

S3C3410X

nWREXP

Output
(External Output)

nWBE1

Figure 4-24. nWREXP, nECS0 and nECS1 Application Example in Normal Mode

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

4-34

NOTES

S3C3410X RISC MICROPROCESSOR UNIFIED CACHE & INTERNAL SRAM

5-1

5 UNIFIED CACHE & INTERNAL SRAM

OVERVIEW

The S3C3410X has internal 4K-byte unified (Instruction/Data) cache. The cache architecture is based on two-
way set associative and use the LRU(Least Recently Used) as cache replacement policy. To maintain the data
coherence between main memory and cache, the cache controller should write the data into the main memory
whenever the CPU update the data in cache memory. Because the cache line size is 4 word, there should be four
word of memory fetch from main memory when cache miss happens. The cost-effective cache architecture can
maintain the good hit ratio by investing the reasonable H/W inside the chip.

The performance difference between cache-on and cache-off is dramatically big. When cache is off, there is
always instruction fetch from main memory. If we assume it takes 4 cycles for instruction fetch from main
memory, the CPU performance will be dropped to 25% of the case of 10% cache hit due to the only instruction
fetch from external memory. The 100% cache hit means that the CPU can fetch the instruction from memory
within one cycle, i.e., zero wait. Usually, the user should turn on the cache to get the higher performance. But, if
user does not want higher performance, the cache can be turn off to reduce the power consumption. If you turn
the cache off and do not use the internal memory as SRAM, the power consumption will be reduced by 40%.

The S3C3410X can support the optional cache configuration. Internal 4KB memory can be configured as 4KB
cache memory, 2KB Cache/2KB SRAM, or 4KB SRAM. Users can select these options suitable for their
application.

The caching area of external memory can be determined to non-cache region by having the configuration. When
the CPU access the non-cacheable region, these data should not be cached. Usually, the program and data area
should be in cacheable region to get higher performance. But, the control-purposed data, for example, the data
handling by DMA, should be in non-cacheable region. If the control data is in the cacheable region, if some of
these data are cached into the cache memory, and if DMA update the data in the external memory of cacheable
region, we can not guarantee the data coherence between data in cache memory and in external memory.
Summarizing, users should always be aware of the memory allocation for non-cacheable and cacheable region.

The S3C3410X can support the 128MB addressing range and it means that the internal address A[26:0] are only
effective even if the CPU can generate the A[31:0] of the internal address. If the S/W generate the address
beyond this range, the cache controller and the memory controller will treat this address as special case. The
reality is as follow. The cache controller accepts the address of A[27:0] and determine whether this access should
be cached, or not when A[27]=0. In other word, the access should be cached if the A[26:0] is corresponding to the
cacheable region and should not be cached if the A[26:0] is corresponding to the non-cacheable region. If A[27] =
1, the cache controller treat this access as non-cacheable access even if the A[26:0] is corresponding to
cacheable or non-cacheable region. When A[27]=1 and the A[26:0] is corresponding to the cacheable region, the
cache controller should treat this access as non-cacheable access and the memory controller should execute the
memory access by using A[26:0] address. The cache controller discard the address of A[31:28] and the memory
controller also discard the address of A[31:27].

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

5-2

Set 1 Cache = 4 Instruction/Data (128-bits) Set 0 Cache = 4 Instruction/Data (128-bits)

Decoder

Height =
128 (64)

7 (6)

32

2

Enable non-cacheable control

2

32

32

Instr3 Instr2 Instr1 Instr0

32-bit

7 (6)

31

Tag Address: 16-bits (17-bits)

27 010 9 4 3 2 12628 11

switch

CS Set 1 Tag Set 0 Tag

16 (17)2 16 (17)

16 (17)

Instr3 Instr2 Instr1 Instr0

32-bit

Figure 5-1. Cache Memory Configuration

S3C3410X RISC MICROPROCESSOR UNIFIED CACHE & INTERNAL SRAM

5-3

CACHE OPERATION

CACHE ORGANIZATION

The S3C3410X cache has a 4KB or 2KB cache memory and Tag RAM. The cache architecture consists of 2-way
set associative, has 4 word as line size, and uses the LRU replacement policy. To maintain the data coherence
between cache and main memory, the S3C3410X supports the WT(Write Through). The Tag RAM has a 2-bit
CS(Cache Status) field as well as Tag data for set 0 and 1 as shown in Figure 5-1. Each Tag set has a 16-bits/17-
bits Tag address of A[26:11] / A[26:10] for 4KB /2KB cache if the address of A[26:0] is cached in the cache
memory. The 2-bit CS indicates the validity of cached data of the corresponding cache memory line. It is also
used for the cache replacing algorithm and for selecting the data coming from set 0 and 1. Because the cache
consists of 2-way set associative, each set should have 2KB. The one line is 4-word(4×32 = 128bit), and there
should be 128 lines in each set. If users specify the 2KB cache, one line is 4-word(4×32 = 128bit) and there
should be 64 lines in each set. The TAG and Cache array memory are mapped to the specific address range and
users can access these memory by S/W, which will be explained in Cache Flush.

CACHE REPLACE OPERATION

After the system is initialized, the value of CS is set to "00", notifying that the memory content in set 0 and 1 are
invalid. When a cache fill occurs, the value of CS is changed to "01" at the specified line, which notifies that the
set 0 is only valid. When the subsequent cache fill occurs, the value of CS will be "11" at the specified line, which
notifies that the memory content in both set 0 and set 1 are valid. When the memory content in both set 0 and set
1 are valid, there should be cache replacement when the cache miss happens. During the miss cycle, the value
of CS should be changed to "10" at the specified line, notifying that the memory content in set 0 will be replaced.
After the completion of miss cycle, the value of CS will be changed to "11", again because the specified cache
was re-filled. If there happens other miss cycle on the same line, the value of CS should be changed to "01" at
the specified line, notifying that the memory content in set 1 will be replaced. After the completion of miss cycle,
the value of CS will be changed to "11", again because the specified cache was re-filled. To indicate the Least
Recently Used line, there is an internal toggling bit which determines that the recent access was to set 0 or set 1.

; Set0, set1 all invalid

; Cache miss occurs

; Set0 = valid and Set1 = invalid
 It does not change status on hit

; Read miss

; AV_S1D = All valid and Set1 dirty.
 "Dirty" means to be accessed just before.
 It does not change the status on hit.
; AV_S0D = All valid and Set0 is dirty.

S0 only: 01

Miss

Hit

Reset(/)

INVALID: 00

AV-S1D: 11

Hit 1

AV-S0D: 10

Miss

Hit 0

Miss or Hit 1

Miss or Hit 0

Figure 5-2. CS-Bit Status Diagram

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

5-4

CACHE DISABLE OPERATION

The S3C3410X cache can support the programmable entire-cache-enable/disable mode. Users can enable the
cache by setting the value of CE bit in SYSCFG to "1", and disable it by clearing the value of SYSCFG to "0".
When the cache disable mode is selected, the instruction and data should always be fetched from the external
memory. The S3C3410X can also support the option for cache size of 0KB, 2KB, and 4KB by the Cache Mode
bits(SYSCFG[16:15]]). When the reset, the default status is 4KB cache. If users specify the less cache size than
4KB, the remained memory can be used as an internal SRAM.

That is to say, if you want to use the internal memory as an internal SRAM, the memory allocation table of the
internal SRAM is as follows:

Item Address Comment

Internal SRAM (SFR start address) – (SFR start address + 0x7ff) 2KB

(SFR start address + 0x800) – (SFR start address + 0xfff) 2KB

The S3C3410X can support the WT(Write Through) to maintain the coherency between the cache and main
memory. When ever the CPU updates the cache memory, the cache controller should issue the updating cycle of
main memory content through the memory controller, automatically. Users should also be cautious about the
data coherency when they specify the cacheable region. For example, if the DMA has the possibility to update
the memory content, the memory region should be non-cacheable.

WRITE BUFFER OPERATION

The S3C3410X has four Write Buffer Register to enhance the performance. The role of write buffer is as follows:
When the CPU try to write its data into the external memory, the memory controller can not execute the memory
cycle if some other master, for example, DMA is using the external bus. In this case, the performance will be
degraded if the CPU and memory controller should wait the bus free. To avoid this situation, the S3C3410X has
internal four-depth Write Buffer Register. In this case, the CPU should write its data into the Write Buffer Register
and execute its next operation. If the bus is free, the Write Buffer Register requests the bus cycle to memory
controller. The Write Buffer also need the TAG address of A[26:0] because the Write Buffer should return the
accessed data to the CPU when the CPU requests the Read operation again before the data update into the main
memory.

S3C3410X RISC MICROPROCESSOR UNIFIED CACHE & INTERNAL SRAM

5-5

26

[31:0] Write Buffer Data
Data to be written into external memory

[1:0] MAS
00 = 8-bit data mode
01 = 16-bit data mode
10 = 32-bit data mode
11 = Not used

[24:0] Address
Indicates the address of write buffer

0310

Write Buffer DataMASAddress

1 0

Figure 5-3. Write Buffer Configuration

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

5-6

CACHE FLUSHING

The cache content as well as Tag at the specific line can be accessed by S/W. In S3C3410X, the memory array
of set 0 is mapped to the address of 0x10000000 – 0x100007ff, which is 2KB size. Similarly, the memory array of
set 1 is mapped to the address of 0x10800000 – 0x108007ff, which is also 2KB size. The Tag array is also
mapped to the address of 0x11000000 – 0x110001ff, which is 512B size. As we explained in previous chapter,
the width of Tag data is total 36-bit, which consists of 2bit CS, 17/16-bit Tag data for 2KB/4KB for set 0, and
17/16-bit Tag data for 2KB/4KB for set 1. In detail, the 16-bit Tag data(Tag[15:0]) of set 1 and 16-bit Tag
data(Tag[15:0]) of set 1 is mapped to the address of 0x11000000. The CS field of the Tag is mapped to the
address of 0x11000004. In this case, CS[1] and CS[0] are corresponding to the data bus of D[31] and D[30]. If
user specify the 2KB cache size, lower 16-bit Tag data of set 1 and lower 16-bit Tag data of set 0 is mapped to
the address of 0x11000000. The remained CS field, upper Tag bit of set 1 and upper Tag bit of set 0 are mapped
to the address of 0x11000004. In this case, CS[1], CS[0], Tag[16] for set 1, and Tag[16] for set 0 are
corresponding to the data bus of D[31], D[30], D[29], and D[28]. The next line will be corresponding to the
address of 0x11000008, 0x11000010, and so on. The memory allocation table of the Tag RAM and Set 0, 1
cache memory is as follows:

Item Address Comment

Set 0 0x10000000 – 0x100007ff 2KB

Set 1 0x10800000 – 0x108007ff 2KB

Tag RAM 0x11000000 – 0x110001ff 512B

NOTE: Cache flushing must be executed only in the cache disable mode.

NON-CACHE AREA CONTROL BIT

The S3C3410X can support the 128MB addressing range and it means that the internal address A[26:0] are only
effective even if the CPU can generate the A[31:0] of the internal address. If the S/W generate the address
beyond this range, the cache controller and the memory controller will treat this address as special case. The
reality is as follow. The cache controller accepts the address of A[27:0] and determine whether this access should
be cached, or not when A[27]=0. In other word, the access should be cached if the A[26:0] is corresponding to the
cacheable region and should not be cached if the A[26:0] is corresponding to the non-cacheable region. If A[27] =
1, the cache controller treat this access as non-cacheable access even if the A[26:0] is corresponding to
cacheable or non-cacheable region. When A[27]=1 and the A[26:0] is corresponding to the cacheable region, the
cache controller should treat this access as non-cacheable access and the memory controller should execute the
memory access by using A[26:0] address. The cache controller discard the address of A[31:28] and the memory
controller also discard the address of A[31:27].

S3C3410X RISC MICROPROCESSOR UNIFIED CACHE & INTERNAL SRAM

5-7

NOTE: Non-cacheable area is the mirroring space of cacheable.

Cacheable Area
(64M Halfword)

0x0000000

Cacheable
0x0010000

0x0020000

0x7FFFFFF

0x8000000

Non-Cacheable
0x8010000

0x8020000

0xFFFFFFF

Non-Cacheable Area
(64M Halfword)

Figure 5-4. Non-cacheable Area

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

5-8

NOTES

S3C3410X RISC MICROPROCESSOR DMA

6-1

6 DMA (DIRECT MEMORY ACCESS)

OVERVIEW

The S3C3410X has two general Direct Memory Access channels (DMA0, DMA1) which performs the data
transfer between the following source/destination and destination/source without CPU intervention:

• Memory(or Internal SRAM) and Memory (or Internal SRAM)

• UART and Memory (or Internal SRAM)

• SIO and Memory (or Internal SRAM)

• SFR and Memory (or Internal SRAM)

• SFR and SFR (Including UART, SIO, Ext. I/O, Timer1/3)

 The on-chip DMA controller can be started by software, by two external DMA requests(nDREQ0, nDREQ1) or by
SIO 0, SIO1, UART, Timer1, and Timer3. The DMA operation can also be stopped and restarted by software.
The CPU can recognize the completion of DMA operation by software polling or interrupt request from DMA.
The source and/or destination address can be increased or decreased during DMA operation and the DMA can
support the transfer size by byte, half-word, and word unit.

nDREQ0
UART
SIO0
SIO1

nDREQ1

DMA0

DMA1

nDREQ

nDREQ

nDACK

nDACK

Mode Select

S
ystem

 B
us

nDACK0
Timer1/3

nDACK1

 Figure 6-1. DMA0/DMA1 Unit Block Diagram

DMA S3C3410X RISC MICROPROCESSOR

6-2

 DMA OPERATION

 The DMA operation can be summarized as follows:

• DMA transfer

• Bus arbitration control

• Starting/Stopping DMA transfer

DMA Transfer

The DMA(Direct Memory Access) can transfer the data directly between source and destination. The source or
the destination should be memory including internal SRAM, UART, SIO, or other SFR. The external devices can
request the DMA service by activating the nDREQ0/1 signal.

The operation of DMA channel should be programmed by configuring the DMA control registers, which contain
the control information such as the direction of the source address, or destination address, and transfer size. The
UART, SIO, Timer1/3, external devices and software can request DMA service. For example, the UART, SIO,
and Timer1/3 can request the DMA service when they are ready to need the DMA operation. For example, the
UART can request the DMA service to DMA controller when the UART finish receiving the data from port and
ready to send the received data to external memory by using DMA. Differently from internal devices, the external
device can activate the nDREQ0/1 signal to request the DMA service to S3C3410X. To make the DMA ready for
its operation, users should specify the necessary control information such as source/destination address, transfer
size, and transfer count. After the completion of these configuration, user can start the DMA operation by
software.

Bus Arbitration Control

Because the DMA operation need the occupation of bus usage, the arbitration should be essential. As well as
DMA, the memory controller inside chip need the bus usage. If there happens simultaneous bus request among
master devices, there should be arbitration process in S3C3410X. The S3C3410X can do the arbitration process
base on fixed priority. The priority of these bus master devices is as follows:

Bus Master Type Priority

Memory Controller(DRAM/SDRAM refresh) 1

DMA0 2

DMA1 3

Write Buffer 4

CPU Core 5

S3C3410X RISC MICROPROCESSOR DMA

6-3

Starting/Stopping DMA Transfer

The DMA can start its operation of transferring the data when the DMA controller receives the request from the
nDREQ signal through external pin, request from UART, request from SIO, or request from Timer1/3. In case of
data transfer between memories, the DMA can also start its operation when the user write the start bit(Run bit) in
DMA control register. When the entire data transfer specified in DMACNT has been finished, the DMA goes into
the idle mode. If users want to perform another DMA operation, the configuration of DMA operation should be
programmed again. The users can stop the DMA operation before its complete termination. By clearing the start
bit(Run bit), the users can stop the DMA operation even if the specified DMA operation is not finished. When
users stop the DMA operation, there will be interrupt generation which depends on the SI(Stop Interrupt) bit in
DMA control register. If SI bit is 0 in DMA control register, there will be DMA operation stop without the interrupt
generation. If users want to resume the DMA operation, users should re-run the DMA operation by setting the
start bit(RE bit) in DMA control register. To guarantee the complete DMA re-run, users should not change the
DMA configuration before the re-start.

DATA TRANSFER MODE

Single Step Mode

The single step mode is usually used for test or debugging because the bus mastership can be handed over to
other bus master between Read and Write. For the initiation of DMA operation, we need the activation of nDREQ
for each Read and Write cycle and there should be separate activation of nDACK for each Read and Write cycle.
In other word, we need two times DMA request and two times DMA acknowledge for single DMA operation. For
this reason, this kind of DMA operation is too slow and this is only for debugging purpose. During the inactive
period of nXDACK, i.e., between Read and Write cycle, the bus controller re-evaluates the bus priority to
determine the new bus mastership.

When the DMA request signal goes low, the bus controller can indicate the bus allocation for the DMA operation
by lowering the DMA Acknowledge signal if there is not higher priority bus request except this DMA request.
During the first low level period of the DMA Acknowledge signal, there will be a DMA read cycle. After the DMA
read cycle, there will be a rising of the DMA Acknowledge signal to indicate the end of the DMA read cycle.
Simultaneously, the next DMA write cycle will happen if the DMA request signal is still low at the rising edge of
DMA acknowledge. But, if the DMA request signal is already high at the rising edge of DMA acknowledge, the
next DMA write cycle will be delayed to the new coming activation of DMA Request signal. The Single Step Mode
of DMA operation can be initiated by the request from UART or SIO or Timer1/3 as well as nDREQ.

nDREQ

nDACK

RD/WR Cycle

Figure 6-2. External DMA requests (Single Mode)

DMA S3C3410X RISC MICROPROCESSOR

6-4

Block Transfer Mode

The block transfer mode means that the DMA operation will be continued up to the end of transfer count. Usually,
the DMA needs the request signal during the unit-by-unit transfer. The block transfer mode need just one time
request for whole service of DMA operation, which is shown in Figure 6-3. This transfer mode can monopoly the
bus usage if users set the CM(Continuous Mode) bit in DMA control register and it can be harmful for other bus
mastership. Therefore, users should be aware of the worst case situation when they need this mode for faster
data transfer. If users take the block transfer mode without setting the CM bit, there will be no bus monopoly. It
means that the higher bus master can take the bus usage during the block transfer.

nDREQ

nDACK

RD/WR Cycle

Figure 6-3. External DMA requests (Block Mode)

S3C3410X RISC MICROPROCESSOR DMA

6-5

Demand Mode

The demand mode means there will be continuous DMA transfer cycles as long as the activation of DMA
Request signal as shown in figure 6-4. This mode doesn't permit the bus hand-over even though the higher
priority bus master request the bus mastership to bus controller during DMA operations. In other word, no other
bus master can have the bus mastership during the demand mode. Due to the monopoly of bus mastership in
demand mode, we should be aware of the fact that the duration of the demand mode must not exceed the
specified maximum time such as the DRAM refresh period.

nDREQ

nDACK

RD/WR Cycle

Figure 6-4. External DMA requests (Demand Mode)

DMA S3C3410X RISC MICROPROCESSOR

6-6

DMA SPECIAL FUNCTION REGISTER

DMA CONTROL REGISTERS

Register Offset
Address

R/W Description Reset
Value

DMACON0 0x300c R/W DMA 0 control register 0x0

DMACON1 0x400c R/W DMA 1 control register 0x0

DMACONx Bit Description Initial State

RE [0] Run Enable: This bit determines the enable or disable of DMA
operation. To start the DMA operation, this bit should be set. To
stop the DMA operation, users can reset this bit.
0 = Disable 1 = Enable

0

BS [1] BUSY Status: When the DMA start its operation, this read-only
status bit is set to "1" automatically. When the DMA is in an idle
state, this bit is set to "0". This bit is "read-only".

0

MODE [3:2] Mode Select: These bits determine the source of DMA initiation.
The initiation of DMA operation can be done by S/W, external
nDREQ, UART, or SIO/Timer.
DMACON0 DMACON1
00 = Software 00 = Software
01 = External nDREQ0 01 = External nDREQ1
10 = UART 10 = UART
11 = SIO, Timer 11 = SIO, Timer

00

DD [4] Destination Address Direction: This bit determines whether the
destination address will be decreased or increased during a DMA
operation
0 = Increase address 1 = Decrease address

0

SD [5] Source Address Direction: This bit determines whether the
source address will be decreased or increased during a DMA
operation
0 = Increase address 1 = Decrease address

0

DF [6] Destination Address Fix: This bit determines whether the
destination address should be changed during a DMA operation,
or not. If users take DF option, the destination address will be
fixed.
0 = Increase/Decrease destination address
1 = Do not change destination address (fix)

0

S3C3410X RISC MICROPROCESSOR DMA

6-7

DMACONx Bit Description Initial State

SF [7] Source Address Fix: This bit determines whether the source
address should be changed during a DMA operation, or not. If
users take SF option, the source address will be fixed.
0 = Increase/Decrease source address
1 = Do not change source address (fix)

0

SI [8] Stop Interrupt Enable: The DMA operation can be started by
setting RE bit to "1" and can also be stopped by resetting RE bit
to "0". When this SI bit is set to "1", and when the DMA
operation is forced to stop, there will be "stop interrupt"
generation. If this bit is "0", the "stop interrupt" will not be
generated. The DMA done interrupt, which is generated after the
DMA counter is expired, can not be masked by this bit.
0 = Do not generate the stop interrupt when DMA stops
1 = Generate the stop interrupt when DMA stops

0

BT (note) [9] 4 Burst Enable: When the MODE bit is set to "1" , the DMA
operation will be done by the burst transfer mode. The size of
burst will depend on TW field in this register. If TW is word unit,
there will be four times word transfer.
0 = Normal transfer 1 = 4 Burst transfer

0

Reserved [10] Reserved 0

SB [11] Single/Block Mode: This bit determines the number of external
DMA request (nDREQ) that are required for the DMA operation.
0 = One nDREQ initiates a single DMA operation
1 = One nDREQ initiates a block DMA operation

0

TW [13:12] Transfer Width: This bit determines the transfer data width:
byte(8-bit), half-word(16-bit) and word(32-bit).
If the transfer width is a byte, source/destination address will be
increased/decreased by one(Byte address unit), If it is a half-
word, the address will be increased/decreased by two(Half-word
address unit). If it is a word, the address will be
increased/decreased by four(Word address unit). Note that the
"transfer width" is not the physical size of data bus. The physical
size of data bus is determined by SMR(System Manager
Register) configuration.
00 = Byte(8-bit) 01 = Half-word(16-bit)
10 = Word(32-bit) 11 = Not used

00

S3C3410X RISC MICROPROCESSOR DMA

6-8

DMACONx Bit Description Initial State

CM [14] Continuous Mode: This bit determines whether the DMA
operation should monopoly the system bus, or not until the
transfer count value reaches to zero.
0 = Normal operation
1 = Monopoly the system bus until the completion of DMA
 operation.

0

DM [15] Demand Mode: To speed up the external DMA operation, set
this bit. If this bit is set, the DMA operation will be continuously
proceeded while nDREQ is activated. In this case, other higher
bus master can not take the bus usage while the operation of this
Demand mode.
0 = Normal external DMA mode
1 = Demand mode

0

NOTE: If a DMA is set as four data burst and continuous mode together, four burst mode is ignored, and the continuous
mode only is operated. In order to use four burst mode in DMA operation, please be sure that continuous mode is
disabled.

S3C3410X RISC MICROPROCESSOR DMA

6-9

DMA SOURCE/DESTINATION ADDRESS REGISTER

These registers contain the 27-bit source/destination address of a DMA channel. Depending on the setting of the
DMA control register (DMACONx), these addresses will be increased/decreased or will be fixed without changing.

Register Offset
Address

R/W Description Reset
Value

DMASRC0 0x3000 R/W DMA 0 source address register 0x0

DMADST0 0x3004 R/W DMA 0 destination address register 0x0

DMASRC1 0x4000 R/W DMA 1 source address register 0x0

DMADST1 0x4004 R/W DMA 1 destination address register 0x0

DMASRC0 Bit Description Initial State

[26:0] Initial source address for DMA0 0x0

DMASRC1 Bit Description Initial State

[26:0] Initial source address for DMA1 0x0

DMADST0 Bit Description Initial State

[26:0] Initial destination address for DMA0 0x0

DMADST1 Bit Description Initial State

[26:0] Initial destination address for DMA1 0x0

DMA TRANSFER COUNT REGISTER

These registers contain the 26-bit count value which is the number of DMA transfer. This value is decreased by 1
when one DMA operation is completed regardless of the width of the data which should be transferred. If the
DMA operates 4 burst mode, the DMACNT is decreased by 1 when 4 data transfer is completed

Register Offset
Address

R/W Description Reset
Value

DMACNT0 0x3008 R/W DMA transfer count register for DMA0 0x0

DMACNT1 0x4008 R/W DMA transfer count register for DMA1 0x0

DMACNT0,1 Bit Description Initial State

[26:0] Number of DMA transfer 0x0

DMA S3C3410X RISC MICROPROCESSOR

6-10

NOTES

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-1

7 I/O PORTS

OVERVIEW

S3C3410X has 74 multiplexed input/output port pins. There are ten port group, which are eight 8-bit I/O port
group, one 2-bit output port group, and one 8-bit input port group:

• Eight 8-bit input/output ports (Port 0, 1, 2, 3, 4, 5, 6 and 7)

• One 2-bit output ports (Port 9)

• One 8-bit input ports (AIN0 – AIN7 / P8.0 – P8.7, Port 8)

Each port can be easily configured by software to meet the various system configuration and design requirement.
Users should define the functionality of port before the start of main program. If users does not want to use the
multiplexed pin functionality pin, these pin can be configured as simple I/O port. For example, the port 8 can be
used as analog input for ADC module or as general input port pins.

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-2

Table 7-1. S3C3410X Port Configuration Overview

Port Configuration Options Recommend

0 General I/O port with pull-up resistor: P0.0, P0.1, P0.2, P0.3 and P0.4 can
alternately serve as external capture input or clock input for Timer0, 1, 2, 3
and 4 respectively. P0.5 and P0.6 can alternately serve as PWM or Toggle
Out for a Timer3 and 4 respectively. P0.7 can be used as external interrupt
input EINT0 or external port write strobe signal(nWREXP).

Bit Programmable

1 General I/O port: P1.4 – P1.7 can alternately serve as external interrupt
inputs of EINT4 – EINT7, or can be configured as address line of A20 – A23
for external interface. P1.0 – P1.3 can alternately as address line of A16 –
A19 for external interface.

Bit Programmable

2 General I/O port: P2.0 – P2.6 can be used alternately as chip select signal
lines for the external interface. P2.7 can be used as external interrupt input
EINT1 or chip select strobes for the extra device(nECS0).

Bit Programmable

3 General I/O port: P3.0 – P3.6 can be used alternately as bus control signal
lines for the external interface: nWBE0:nBE0:DQM0, nWBE1:nBE1:DQM1,
nCAS0:nSRAS, nCAS1:nSCAS, SCKE, SCLK. P3.7 can be used alternately
as external interrupt input EINT2 or chip select strobes for the extra
device(nECS1).

Bit Programmable

4 General I/O port: P4.0 – P4.7 can be configured as data lines, D8 – D15 for
the external interface or address line, A16 – A23.

Bit Programmable

5 General I/O port: P5.0 and P5.2 can be used alternately as external request
input for DMA module: nDREQ0, nDREQ1. P5.1 and P5.3 can be used
alternately as external acknowledge output for DMA module: nDACK0,
nDACK1. P5.4 and P5.5 can be used alternately as serial data and serial
clock for IIC module: IICSDA and IICSCK. P5.6 and P5.7 can be used
alternately as input and output for UART module: URXD and UTXD.

Bit Programmable

6 General I/O port: P6.0 and P6.4 can be used alternately as serial data input
pins for SIO module: SIORXD0 and SIORXD1. P6.2 and P6.6 can be used
alternately as serial data output pins for SIO module: SIOTXD0 and
SIOTXD1. P6.1 and P6.5 can be used alternately as external clock
input/output for SIO module: SIOCLK0 and SIOCLK1. P6.7 can be used as
external interrupt input EINT3.

Bit Programmable

7 General I/O port: can be used as a real time output by 8-bit or 4-bit unit. If
TEST[1:0] bit is set to "10" or "11", P0.0 – P0.4 can be used as JTAG test
port: nTCK (P7.0), TMS (P7.1), TDI (P7.2), nTRST (P7.3), TDO (P7.4).

Bit Programmable

8 Analog input channels AIN0 – AIN7, alternately general input port or external
interrupt input EINT8(P8.4), EINT9(P8.5), EINT10(P8.6) and EINT11(P8.7).

Bit Programmable

9 General Output Port: P9.0 and P9.1 can be used alternately as LCD control
signal, LP and DCLK

Bit Programmable

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-3

I/O PORT CONTROL REGISTER

PORT DATA REGISTER

All ten port data registers have the identical structure as shown in below:

Table 7-2. Port Data Register Summary

Register Name Mnemonic Offset Reset Value R/W

Port 0 Data Register PDAT0 0xb000 0x0 R/W

Port 1 Data Register PDAT1 0xb001 0x0 R/W

Port 2 Data Register PDAT2 0xb002 0x0 R/W

Port 3 Data Register PDAT3 0xb003 0x0 R/W

Port 4 Data Register PDAT4 0xb004 0x0 R/W

Port 5 Data Register PDAT5 0xb005 0x0 R/W

Port 6 Data Register PDAT6 0xb006 0x0 R/W

Port 7 Data Register PDAT7 0xb007 0x0 R/W

Port 8 Data Register PDAT8 0xb008 0x0 R

Port 9 Data Register PDAT9 0xb009 0x0 R/W

Port 7 Buffer Register P7BR 0xb00b 0x0 R/W

PDATn Bit Description Initial State

I/O Port n Data Register (n = 0 – 9, n = 0 – 7, 9 : R/W, n = 8 : R) :

When the port is configured as input port, the port data will reflect the signal on the pin. When the port is
configured as output port, the port data in Port Data Register will be given as output on the pin.

Pn.0 [0] Port n.0 port data bit (LSB) 0

Pn.1 [1] Port n.1 port data bit 0

Pn.2 [2] Port n.2 port data bit 0

Pn.3 [3] Port n.3 port data bit 0

Pn.4 [4] Port n.4 port data bit 0

Pn.5 [5] Port n.5 port data bit 0

Pn.6 [6] Port n.6 port data bit 0

Pn.7 [7] Port n.7 port data bit (MSB) 0

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-4

Table 7-3. Port Control Register Summary

Register Name Mnemonic Offset Reset Value R/W

External Interrupt Pending Register EINTPND 0xb031 0x0 R/W

External Interrupt Control Register EINTCON 0xb032 0x0 R/W

External Interrupt Mode Register EINTMOD 0xb034 0x0 R/W

Port 0 Control Register PCON0 0xb010 0x0 R/W

Port 1 Control Register PCON1 0xb012 0x0 R/W

Port 2 Control Register PCON2 0xb014 0x0 R/W

Port 3 Control Register PCON3 0xb016 0x0 R/W

Port 4 Control Register PCON4 0xb018 0x0 R/W

Port 5 Control Register PCON5 0xb01c 0x0 R/W

Port 6 Control Register PCON6 0xb020 0x0 R/W

Port 7 Control Register PCON7 0xb024 0x0 R/W

Port 8 Control Register PCON8 0xb026 0x0 R/W

Port 9 Control Register PCON9 0xb027 0x0 R/W

Port 0 Pull-up control Register PUR0 0xb028 0x80 R/W

Port 1 Pull-down control Register PDR1 0xb029 0xff R/W

Port 2 Pull-up control Register PUR2 0xb02a 0xff R/W

Port 3 Pull-up control Register PUR3 0xb02b 0xff R/W

Port 4 Pull-down control Register PDR4 0xb02c 0xff R/W

Port 5 Pull-up control Register PUR5 0xb02d 0x0 R/W

Port 6 Pull-up control Register PUR6 0xb02e 0x0 R/W

Port 7 Pull-up control Register PUR7 0xb02f 0x0 R/W

Port 8 Pull-up control Register PUR8 0xb03c 0x0 R/W

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-5

PORT 0 CONTROL REGISTERS (PCON0, PUR0)

Register Offset
Address

R/W Description Reset
Value

PCON0 0xb010 R/W Configuration the pins of Port 0 0x0

PUR0 0xb028 R/W pull-up disable resister for port 0 0x80

PCON0 Bit Description Initial State

P0.0 [0] 0 = Schmitt input mode, capture (TCAP0), or clock (TCLK0)
input for Timer 0. If the timer mode is configured as capture
mode or external timer clock mode, this pin will be used as
TCAP0 or TCLK0. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.
1 = C-MOS push-pull output

0

P0.1 [1] 0 = Schmitt input mode, capture (TCAP1), or clock (TCLK1)
input for Timer 1. If the timer mode is configured as Capture
mode or external timer clock mode, this pin will be used as
TCAP1 or TCLK1. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.
1 = C-MOS push-pull output

0

P0.2 [2] 0 = Schmitt input mode, capture (TCAP2), or clock (TCLK2)
input for Timer 2. If the timer mode is configured as Capture
mode or external timer clock mode, this pin will be used as
TCAP2 or TCLK2. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.
1 = C-MOS push-pull output

0

P0.3 [3] 0 = Schmitt input mode or clock (TCLK3) input for Timer 3. If the
timer mode is configured as external timer clock mode, this pin
will be used as TCLK3. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.
1 = C-MOS push-pull output

0

P0.4 [4] 0 = Schmitt input mode or clock (TCLK4) input for Timer 4. If the
timer mode is configured as external timer clock mode, this pin
will be used as TCLK4. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.
1 = C-MOS push-pull output

0

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-6

PCON0 Bit Description Initial State

P0.5 [6:5] 00 = Schmitt input mode or capture (TCAP3) input for Timer 3. If
the timer mode is configured as Capture mode, this pin will be
used as TCAP3.
01 = C-MOS push-pull output
10 = C-MOS push-pull PWM0/TOUT3 output for Timer 3

00

P0.6 [8:7] 00 = Schmitt input mode or capture (TCAP4) input for Timer 4.
If the timer mode is configured as Capture mode, this pin will be
used as TCAP4.
01 = C-MOS push-pull output
10 = C-MOS push-pull PWM1/TOUT4 output for Timer 4

00

P0.7 [10:9] 00 = Schmitt input mode or external interrupt input (EINT0). If
the EINT0 is enabled, this pin will be used as external interrupt
request pin. Otherwise, this pin will be used as input port pin.
01 = C-MOS push-pull output
10 = C-MOS push-pull nWREXP output

00

PUR0 Bit Description Initial State

P0 [7:0] Setting the corresponding pull-up resistor of Port 0
0 = Disable pull-up resister 1 = Enable pull-up resister

0x80

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-7

VDD

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input

Alternative Input

VSS

Figure 7-1. Pin Circuit Type 0 (P0.0 – P0.6)

VDD

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

External
Interrupt Input

Noise
Filter

VSS

Normal Input

Figure 7-2. Pin Circuit Type 0-1 (P0.7, P2.7, P3.7, P6.7)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-8

PORT 1 CONTROL REGISTERS (PCON1, PDR1)

Register Offset
Address

R/W Description Reset
Value

PCON1 0xb012 R/W Configuration the pins of Port 1 0x0

PDR1 0xb029 R/W pull-down disable resister for port 1 0xff

PCON1 Bit Description Initial State

P1.0 [0] Setting the corresponding bit of Port 1
0 = Schmitt input mode 1 = C-MOS push-pull output mode

0

P1.1 [1] Setting the corresponding bit of Port 1
0 = Schmitt input mode 1 = C-MOS push-pull output mode

0

P1.2 [2] Setting the corresponding bit of Port 1
0 = Schmitt input mode 1 = C-MOS push-pull output mode

0

P1.3 [3] Setting the corresponding bit of Port 1
0 = Schmitt input mode 1 = C-MOS push-pull output mode

0

P1.4 [4] Setting the corresponding bit of Port 1
0 = Input or External interrupt input(EINT4). If the EINT4 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode

0

P1.5 [5] Setting the corresponding bit of Port 1
0 = Input or External interrupt input(EINT5). If the EINT5 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode

0

P1.6 [6] Setting the corresponding bit of Port 1
0 = Input or External interrupt input(EINT6). If the EINT6 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode

0

P1.7 [7] Setting the corresponding bit of Port 1
0 = Input or External interrupt input(EINT7). If the EINT7 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode

0

MP1 [15:8] Setting the Port 1 mode
0 = Normal input/output mode
(P1.0 – P1.7 sets the its corresponding bit of Port 1)
1 = Address bus line mode (Don't care of value P1.0 – P1.7). If
this bit is 1, P1.0–P1.7 will be used as address of A16 – A23.

0x00

PDR1 Bit Description Initial State

P1 [7:0] Setting the corresponding pull-down resistor of Port 1
0 = Disable pull-down resister 1 = Enable pull-down resister

0xff

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-9

VDD

Pull-down Resistor
(Typical Value: 50 KΩ)

VSS

Pull-down Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input

Alternative Input

VSS

Figure 7-3. Pin Circuit Type 1-1 (Port1.0 – Port1.3)

VDD

Pull-down Resistor
(Typical Value: 50 KΩ)

VSS

Pull-down Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

External
Interrupt Input

Noise
Filter

VSS

Normal Input

Figure 7-4. Pin Circuit Type 1-2 (Port1.4 – Port1.7)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-10

PORT 2 CONTROL REGISTERS (PCON2, PUR2)

Register Offset
Address

R/W Description Reset
Value

PCON2 0xb014 R/W Configuration the pins of Port 2 0x0

PUR2 0xb02a R/W pull-up disable resister for port 2 0xff

PCON2 Bit Description Initial State

P2.0 [1:0] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Chip select signal(nCS1) output for the external interface

00

P2.1 [3:2] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Chip select signal(nCS2) output for the external interface

00

P2.2 [5:4] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Chip select signal(nCS3) output for the external interface

00

P2.3 [7:6] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Chip select signal(nCS4) output for the external interface

00

P2.4 [9:8] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Chip select signal(nCS5) output for the external interface

00

P2.5 [11:10] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Chip select signal(nCS6) or Row address strobe
signal(nRAS0) for DRAM or Chip select signal(nSCS0) for
SDRAM. It depends on the configuration on bank 6. If this bank
is configured as ROM/SRAM, EDO DRAM, or SDRAM, this
signal will behavior as nCS6, nRAS0, or nSCS0.

00

P2.6 [13:12] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Chip select signal(nCS7) or Row address strobe
signal(nRAS1) for DRAM or Chip select signal(nSCS1) for
SDRAM. It depends on the configuration on bank 7. If this bank
is configured as ROM/SRAM, EDO DRAM, or SDRAM, this
signal will behavior as nCS7, nRAS0, or nSCS0.

00

P2.7 [15:14] 00 = Input or external interrupt input(EINT1)
01 = C-MOS push-pull output mode
10 = Extra Chip select signal(nECS0) output for the external
interface

00

PUR2 Bit Description Initial State

P2 [7:0] Setting the corresponding pull-up resistor of Port 2
0 = Disable pull-up resister 1 = Enable pull-up resister

0xff

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-11

VDD

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input
VSS

Figure 7-5. Pin Circuit Type 2-1 (P2.0 – P2.6)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-12

PORT 3 CONTROL REGISTERS (PCON3, PUR3)

Register Offset
Address

R/W Description Reset
Value

PCON3 0xb016 R/W Configuration the pins of port 3 0x0

PUR3 0xb02b R/W pull-up disable resister for port 3 0xff

PCON3 Bit Description Initial State

P3.0 [1:0] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Write byte enable(nWBE0) output for external interface or
Data Mask(DQM0) output for SDRAM or Byte enable(nBE0)
output for x16 SRAM. If the memory bank is configured as
SDRAM bank, this port will behavior as Data Mask(DQM0). If the
memory bank is configured as x16 SRAM bank, this port will
behavior as Byte enable(nBE0). Otherwise, this port will
behavior as nWBE0.

00

P3.1 [3:2] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Write byte enable(nWBE1) output for external interface or
Data Mask(DQM1) output for SDRAM or Byte enable(nBE0)
output for x16 SRAM. If the memory bank is configured as
SDRAM bank, this port will behavior as Data Mask(DQM1). If the
memory bank is configured as x16 SRAM bank, this port will
behavior as Byte enable(nBE0). Otherwise, this port will
behavior as nWBE1.

00

P3.2 [5:4] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Column address strobe(nCAS0) output for DRAM or Row
address strobe(nSRAS) output for SDRAM. If the memory bank
is configured as EDO DRAM. This port will behavior as nCAS0.
If the memory bank is configured as SDRAM bank, this port will
behavior as nSRAS.

00

P3.3 [7:6] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Column address strobe(nCAS1) output for DRAM or Row
address strobe(nSCAS) output for SDRAM. This port will
behavior as nCAS1. If the memory bank is configured as
SDRAM bank, this port will behavior as nSRAS.

00

P3.4 [9:8] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Write enable(nWE) output for 16-bit SRAM or SDRAM

00

P3.5 [11:10] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Clock Enable(SCKE) output for SDRAM

00

P3.6 [13:12] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Clock output for SDRAM

00

P3.7 [15:14] 00 = C-MOS input mode or external interrupt(EINT2) mode
01 = C-MOS push-pull output mode
10 = Extra chip select(nECS1) output

00

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-13

PUR3 Bit Description Initial State

 P3 [7:0] Setting the corresponding pull-up resistor of Port 3
0 = Disable pull-up resister
1 = Enable pull-up resister

0xff

VDD

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input
VSS

Figure 7-6. Pin Circuit Type 3-1 (P3.0 – P3.6)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-14

PORT 4 CONTROL REGISTERS (PCON4, PDR4)

Register Offset
Address

R/W Description Reset
Value

PCON4 0xb018 R/W Configuration the pins of Port 4 0x0

PDR4 0xb02c R/W pull-down disable resister for port 4 0xff

PCON4 Bit Description Initial State

P4.0 [1:0] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A16 11 = D8

00

P4.1 [3:2] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A17 11 = D9

00

P4.2 [5:4] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A18 11 = D10

00

P4.3 [7:6] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A19 11 = D11

00

P4.4 [9:8] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A20 11 = D12

00

P4.5 [11:10] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A21 11 = D13

00

P4.6 [13:12] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A22 11 = D14

00

P4.7 [15:14] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = A23 11 = D15

00

PDR4 Bit Description Initial State

P4 [7:0] Setting the corresponding pull-down resistor of Port 4
0 = Disable pull-down resister 1 = Enable pull-down resister

0xff

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-15

VDD

Pull-down Resistor
(Typical Value: 50 KΩ)

VSS

Pull-down Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input

Alternative Input

VSS

Figure 7-7. Pin Circuit Type 4 (Port 4)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-16

PORT 5 CONTROL REGISTERS (PCON5, PUR5)

Register Offset
Address

R/W Description Reset
Value

PCON5 0xb01c R/W Configuration the pins of Port 5 0x0

PUR5 0xb02d R/W pull-up disable resister for port 5 0x0

PCON5 Bit Description Initial State

P5.0 [1:0] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = External DMA Request input (nDREQ0)

00

P5.1 [3:2] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = External DMA Acknowledge output (nDACK0)

00

P5.2 [5:4] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = External DMA Request input (nDREQ1)

00

P5.3 [7:6] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = External DMA Acknowledge output (nDACK1)

00

P5.4 [9:8] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Serial data line, SDA for IIC interface (Open-drain type)

00

P5.5 [11:10] 00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Serial clock line, SCK for IIC interface (Open-drain type)

00

P5.6 [13:12] 00 = Schmitt input mode or serial input(URXD) for UART. For
the case of URXD, the UART should be enabled. Otherwise, this
bit will be input port.
01 = C-MOS push-pull output mode
10 = N-ch open-drain output mode

00

P5.7 [16:14] 000 = Schmitt input mode
001 = C-MOS push-pull output mode
011 = N-ch open-drain output mode
101 = C-MOS push-pull serial output(UTXD) for UART
111 = N-ch open-drain serial output(UTXD) for UART

000

PUR5 Bit Description Initial State

P5 [7:0] Setting the corresponding pull-up resistor of Port 5
0 = Disable pull-up resister 1 = Enable pull-up resister

0x0

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-17

VDD

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input

Alternative Input

VSS

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Enable

Figure 7-8. Pin Circuit Type 5-1 (P5.0 – P5.5)

VDD

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input

Alternative Input

VSS

Open-drain

Figure 7-9. Pin Circuit Type 5-9 (P5.6, P5.7, P6.0 – P6.6)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-18

PORT 6 CONTROL REGISTERS (PCON6, PUR6)

Register Offset
Address

R/W Description Reset
Value

PCON6 0xb020 R/W Configuration the pins of Port 6 0x0

PUR6 0xb02e R/W pull-up disable resister for port 6 0x0

PCON6 Bit Description Initial State
P6.0 [1:0] 00 = Schmitt input or serial data input(SIORXD0) mode for SIO.

For the case of SIORXD0, the SIO 0 should be enabled.
Otherwise, this bit will be input port.
01 = C-MOS push-pull output mode
10 = N-ch open-drain output mode

00

P6.1 [4:2] 000 = Schmitt input or serial clock input(SIOCLK0) mode for SIO
For the case of SIOCLK0, the SIO 0 should be enabled.
Otherwise, this bit will be input port.
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial clock output (SIOCLK0) for SIO 0
110 = N-ch open-drain serial clock output (SIOCLK0) for SIO 0

000

P6.2 [7:5] 000 = Schmitt input mode
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial data output (SIOTXD0) for SIO 0
110 = N-ch open-drain serial data output (SIOTXD0) for SIO 0

000

P6.3 [9:8] 00 = Schmitt input mode 01 = C-MOS push-pull output mode
10 = Wait signal(nWAIT) input for the external interface
11 = Ready signal(nSIORDY) input or output for SIO0,1

00

P6.4 [11:10] 00 = Schmitt input or serial data input (SIORXD1) mode for SIO.
For the case of SIORXD1, the SIO 1 should be enabled.
Otherwise, this bit will be input port.
01 = C-MOS push-pull output mode
10 = N-ch open-drain output mode

00

P6.5 [14:12] 000 = Schmitt input or serial clock input (SIOCLK1) mode for
SIO For the case of SIOCLK1, the SIO 1 should be enabled.
Otherwise, this bit will be input port.
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial clock output (SIOCLK1) for SIO 1
110 = N-ch open-drain serial clock output(SIOCLK1) for SIO 1

000

P6.6 [17:15] 000 = Schmitt input mode
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial data output (SIOTXD1) for SIO 1
110 = N-ch open-drain serial data output (SIOTXD1) for SIO 1

000

P6.7 [18] 0 = Schmitt input mode or external interrupt (EINT3) input mode.
For the case of EINT3, the EINT3 should be enabled. Otherwise,
this bit will be input port.
1 = C-MOS push-pull output mode

0

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-19

 PUR6 Bit Description Initial State

P6 [7:0] Setting the corresponding pull-up resistor of Port 6
0 = Disable pull-up resister 1 = Enable pull-up resister

0x0

PORT 7 CONTROL REGISTERS (PCON7, PUR7)

Register Offset
Address

R/W Description Reset
Value

PCON7 0xb024 R/W Configuration the pins of Port 7 0x0

PUR7 0xb02f R/W pull-up disable resister for port 7 0x0

P7BR 0xb00b R/W Buffer register for storing real time output data 0x0

PCON7 Bit Description Initial State

P7.0 (RP0) [0] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

P7.1 (RP1) [1] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

P7.2 (RP2) [2] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

P7.3 (RP3) [3] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

P7.4 (RP4) [4] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

P7.5 (RP5) [5] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

P7.6 (RP6) [6] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

P7.7 (RP7) [7] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0

RTO [9:8] Setting port 7 as real time output
00 = General I/O port
01 = Low nibble real time output buffer mode
10 = High nibble real time output buffer mode
11 = Byte real time output buffer mode

00

LNS [10] Time source of Low nibble real time output
0 = T0 1 = T3

0

HNS [11] Time source of High nibble real time output
0 = T0 1 = T3

0

PUR7 Bit Description Initial State

P7 [7:0] Setting the corresponding pull-up resistor of Port 7
0 = Disable pull-up resister 1 = Enable pull-up resister

0x0

NOTE: Port 7 can be used for the realtime buffer output port. The realtime buffer is that P7BR data are output to RP[7:0],
when timerD or timer3 match interrupt occurs. At this time, P7 must be configured to C-MOS push-pull output
mode.

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-20

VDD

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Enable

Alternative Signal

Port Data M
U
X

Select

Output Enable

In/Out

Data

Normal Input
VSS

Figure 7-10. Pin Circuit Type 7 (P7.0 – P7.7)

M
U
X

4

4
P7B0 (High)

T0/T3 INT

Data Bus (Bit4-7)

4
P7 (High)

4
RP4-RP7

M
U
X

4

4
P7B0 (Low)

T0/T3 INT

Data Bus (Bit0-3)

4
P7 (Low)

4
RP0-RP3

PCON7

Figure 7-11. Port 7 (Real Time Output)

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-21

TDAT0 = #F
P7BR = #1100b

TDAT0 = #A
Start Timer 0
P7BR = #0000b

#0000b

TDAT0 = #4
P7BR = #1101b

#1100b

TDAT0 = #6
P7BR = #1011b

#1101b

TDAT0 = #7
P7BR = #0111b

#1011b

A F 4 6

#1110b

TDAT0 = #4
P7BR = #1100b

#1100b

7 8 4

TDAT0 = #n
P7BR = #nb

#1110b

5

TDAT0 = #8
P7BR = #1110b

TDAT0 = #5
P7BR = #1110b

#0111b

Timer0 Interrupt

Figure 7-12. Real Time Output Example

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-22

PORT 8 CONTROL REGISTERS (PCON8, PUR8)

Register Offset
Address

R/W Description Reset
Value

PCON8 0xb026 R/W Configuration the pins of port 8 0x0

PUR8 0xb03c R/W Pull-up disable resister for port 8 0x0

PCON8 Bit Description Initial State

P8.0 [0] 0 = C-MOS input mode 1 = AIN0 0

P8.1 [1] 0 = C-MOS input mode 1 = AIN1 0

P8.2 [2] 0 = C-MOS input mode 1 = AIN2 0

P8.3 [3] 0 = C-MOS input mode 1 = AIN3 0

P8.4 [4] 0 = C-MOS input mode or External interrupt input mode. For the
case of EINT8, the EINT8 should be enabled. Otherwise, this bit
will be input port.
1 = AIN4

0

P8.5 [5] 0 = C-MOS input mode or External interrupt input mode. For the
case of EINT9, the EINT9 should be enabled. Otherwise, this bit
will be input port.
1 = AIN5

0

P8.6 [6] 0 = C-MOS input mode or External interrupt input mode. For the
case of EINT10, the EINT10 should be enabled. Otherwise, this
bit will be input port.
1 = AIN6

0

P8.7 [7] 0 = C-MOS input mode or External interrupt input mode. For the
case of EINT11, the EINT11 should be enabled. Otherwise, this
bit will be input port.
1 = AIN7

0

PUR8 Bit Description Initial State

P8 [7:0] Setting the corresponding pull-up resistor of port 7
0 = Disable pull-up resister 1 = Enable pull-up resister

0x0

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-23

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Pull-up Resistor Enable

In+
- AVREF

Normal Input Mode

Normal Input

ADC Input

Figure 7-13. Pin Circuit Type 8-1 (P8.0 – P8.3)

Pull-up Resistor
(Typical Value: 50 KΩ)

VDD

Interrupt Input
Noise
Filter

Normal Input

Pull-up Resistor Enable

Normal Input Mode

In+
- AVREF

ADC Input

Figure 7-14. Pin Circuit Type 8-2 (P8.4 – P8.7)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-24

PORT 9 CONTROL REGISTERS (PCON9)

Register Offset
Address

R/W Description Reset
Value

PCON9 0xb027 R/W Configuration the pins of Port 9 0x0

PCON8 Bit Description Initial State

P9.0 [0] 0 = LCD clock output mode (for LP)
1 = C-MOS push-pull output

LP: When you write any data to EXTDAT0 or EXTDAT1 register,
 this signal is generated by the memory controller.

0

P9.1 [1] 0 = LCD line pulse output mode (for DCLK)
1 = C-MOS push-pull output

DCLK: When you write any data to EXTPORT register by DMA,
 this signal is generated by the memory controller.

0

VDD

In/Out
Alternative Signal

Port Data M
U
X

Select

VSS

Figure 7-15. Pin Circuit Type 9 (P9.0, P9.1)

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-25

VDD

nCS0
nRD
nAS

VSS

Figure 7-16. Pin Circuit Type 10 (nCS0, nRD and nAS)

RESET

VDD

Pull-Up Resistor
(Typical 100 KΩ)

Figure 7-17. Pin Circuit Type 11 (RESETRESET)

TEST1
TEST2

Mode
Selection

Figure 7-18. Pin Circuit Type 12 (TEST1, TEST2)

I/O PORTS S3C3410X RISC MICROPROCESSOR

7-26

EXTERNAL INTERRUPT CONTROL REGISTERS (EINTPND, EINTCON, EINTMOD)

Register Offset
Address

R/W Description Reset
Value

EINTPND 0xb031 R/W External interrupt pending register 0x0

EINTCON 0xb032 R/W External interrupt control register 0x0

EINTMOD 0xb034 R/W External interrupt mode register 0x0

EINTPND Bit Description Initial State

EINT4 [0] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT4) is pending

0

EINT5 [1] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT5) is pending

0

EINT6 [2] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT6) is pending

0

EINT7 [3] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT7) is pending

0

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-27

EINTCON Bit Description Initial State

EINT0 [0] Setting external interrupt enable of EINT0
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT1 [1] Setting external interrupt enable of EINT1
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT2 [2] Setting external interrupt enable of EINT2
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT3 [3] Setting external interrupt enable of EINT3
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT4 [4] Setting external interrupt enable of EINT4
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT5 [5] Setting external interrupt enable of EINT5
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT6 [6] Setting external interrupt enable of EINT6
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT7 [7] Setting external interrupt enable of EINT7
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT8 [8] Setting external interrupt enable of EINT8
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT9 [9] Setting external interrupt enable of EINT9
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT10 [10] Setting external interrupt enable of EINT10
0 = Disable external interrupt 1 = Enable external interrupt

0

EINT11 [11] Setting external interrupt enable of EINT11
0 = Disable external interrupt 1 = Enable external interrupt

0

S3C3410X RISC MICROPROCESSOR I/O PORTS

7-28

EINTMOD Bit Description Initial State

EINT0 [2:0] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

000

EINT1 [5:3] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

000

EINT2 [8:6] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

000

EINT3 [11:9] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

000

EINT4 [14:12] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

000

EINT5 [17:15] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

000

EINT6 [20:18] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

000

EINT7 [23:21] 000 = Falling edge triggered 001 = Rising edge triggered
010 = High level interrupt 011 = Low level interrupt

100 = Both edge triggered

000

EINT8 [25:24] 00 = Falling edge triggered 01 = Rising edge triggered
10 = High level interrupt 11 = Low level interrupt

00

EINT9 [27:26] 00 = Falling edge triggered 01 = Rising edge triggered
10 = High level interrupt 11 = Low level interrupt

00

EINT10 [29:28] 00 = Falling edge triggered 01 = Rising edge triggered
10 = High level interrupt 11 = Low level interrupt

00

EINT11 [31:30] 00 = Falling edge triggered 01 = Rising edge triggered
10 = High level interrupt 11 = Low level interrupt

00

NOTES:
1. Because each external interrupt pins has a 200ns noise filter
2. Because EINTPNDx bits are not cleared automatically, you have to clear this bit by writing "0". (Although these bits are

not cleared, the interrupt triggering will operate.)

S3C3410X RISC MICROPROCESSOR TIMER

8-1

8 TIMER (16-BIT TIMERS & 8-BIT TIMERS)

OVERVIEW

The S3C3410X has three 16-bit timers (Timer0, Timer1, and Timer2) and two 8-bit timers (Timer3 and Timer4).
The 16-bit timer can operate in interval mode, capture mode, match & overflow mode or DMA mode (Timer1
only). The 8-bit timer can operate in interval mode, capture mode, PWM (Pulse Width Modulation) mode or DMA
mode (Timer3 only). The clock source for timer can be an internal or an external clock. Users can enable or
disable the timer by setting control bits in the corresponding timer mode register.

The following list summarizes the main features of the general-purpose timers:

• Maximum period of 16-bit Timer is 419.4ms at 40MHz and minimum resolution is 25ns at 40MHz

• Maximum period of 8-bit Timer is 26.2ms at 40MHz and minimum resolution is 50ns at 40MHz

• Programmable clock source for timer, including an external clock

• Input capture capability with programmable trigger edge on input pin

• PWM mode operation (Timer3 and Timer4 only)

• DMA mode operation (Timer1 and Timer3 only)

TIMER S3C3410X RISC MICROPROCESSOR

8-2

8-bit
Prescaler 16-bit

Up Counter

16-bit
Comparator

Timer Buffer
Register

Timer Data
Register

Capture
Detect

TCLK

MCLK

TCAP

TOFINT

TMINT/
TCAPINT

Data Bus

Data Bus

Input Select

Mode Select

Figure 8-1. 16-Bit Timer Block Diagram

S3C3410X RISC MICROPROCESSOR TIMER

8-3

8-bit
Prescaler

8-bit
Up Counter

8-bit
Comparator

Timer Buffer
Register

Timer FIFO
Register

Capture
Detect

TCLK

TCAP

TOFINT

TMINT/TCAPINT
PWM/TOUT

Data Bus

Data Bus

Mode Select

1/2 MCLK

1/4 MCLK

1/8 MCLK

1/16 MCLK

Input Select Input Select

Figure 8-2. 8-Bit Timer Block Diagram

TIMER S3C3410X RISC MICROPROCESSOR

8-4

OPERATION DESCRIPTION

16-BIT TIMERS (TIMER0, TIMER1 AND TIMER2)

Interval Mode Operation

In interval mode, a match signal should be generated when the counter value is identical to the value written to
the timer data register, TDAT0, TDAT1 and TDAT2. The match signal can generate a timer 0, 1, or 2 match
interrupt and clear the counter value. When a match condition happens, the timer output(TOUT0/1/2) will be
toggled.

Capture Mode Operation

In capture mode, the timer can perform the capturing operation, which is that the counter value is transferred into
the capture register(Timer Data Register) in synchronization with an external trigger. The external triggering
signal for capturing operation is a pre-defined valid edge on the capture input pin. When this valid signal
happens, the counter value in process should be moved into the capture register(Timer Data Register). By using
the capturing function, users can measure the time difference between external events. If a valid trigger signal on
the pin does not happen before the overflow, an overflow interrupt will be generated and the counter value will be
counted from 0000h, again.

Match & Overflow Mode Operation

In this mode, a match signal can be generated when the counter value is identical to the value written to the timer
data register. However, the match signal does not clear the counter even if it can generate a match interrupt as
same as the interval mode. Because it does not clear the counter value, the timer can run up to the overflow of
counter value and generate an overflow interrupt, also. After the overflow of counter value, the counter value will
be counted from 0000h, again.

DMA Mode Operation (Timer 1 Only)

Users can use the DMA to support the Timer 1. The DMA can transfer the data in memory to the TDAT1(Timer
Data Register). When the match interrupt happens, the Timer 1 can request the DMA service to transfer the data
into the TDAT1 register, again. Before the DMA-based operation, users should configure the control information
on DMA, such as TCON1[5:3] to "010", TDAT1, destination address, source address, and so on. This kind of
DMA-based timer operation is very helpful to generate the pre-defined timing event.

S3C3410X RISC MICROPROCESSOR TIMER

8-5

8-BIT TIMER (TIMER3 AND TIMER4)

Interval Mode Operation

In interval mode, a match signal should be generated when the counter value is identical to the value written to
the timer data register, TDAT3 and TDAT4. The match signal can generate a timer match interrupt and clear the
counter value. When a match condition happens, the timer output(TOUT3/4) will be toggled.

Capture Mode Operation

In capture mode, the timer can perform the capturing operation, which is that the counter value is transferred into
the capture register(Timer Data Register) in synchronization with an external trigger. The external triggering
signal for capturing operation is a pre-defined valid edge on the capture input pin. When this valid signal
happens, the counter value in process should be moved into the capture register(Timer Data Register). By using
the capturing function, users can measure the time difference between external events. If a valid trigger signal on
the pin does not happen before the overflow, an overflow interrupt will be generated and the counter value will be
counted from 00h, again.

PWM Mode Operation

The timer can be used for generating the PWM(Pulse Width Modulation) signal. Timer3/4 can support the PWM
functionality, which is different from Timer0/1/2.

In this mode, a match signal should be generated when the counter value is identical to the written to the timer
FIFO register(Timer Data Register). However, because the match signal dose not clear the counter, it can
generate an overflow interrupt when the counter value reaches to the ffh. After the overflow of counter value, the
timer will count its value from 00h, again. To generate the PWM signal, the PWM output should be "Low" level as
long as the counter value is less than or equal(≤) to the value specified in Timer Buffer Register and "High" level
as long as the counter value is greater than (>) the value specified in Timer Buffer Register. Because it is 8-bit
PWM timer, the one period is equal to tCLK × 256.

The pre-scale value can define the input clock frequency of Timer according to the following equation:

Timer input clock frequency(tCLK) = MCLK / (pre-scale value + 1) : for Timer 0, 1 and 2

Timer input clock frequency(tCLK) = MCLK / (pre-scale value +1) / (divider value) : for Timer 3 and 4

pre-scale value = 0 – 255, divider value = 2, 4, 8, 16

DMA Mode Operation (Timer 3 Only)

Users can use the DMA to support the Timer 1. The DMA can transfer the data in memory to the TDAT3(Timer
Data Register). When the match interrupt happens, the Timer 1 can request the DMA service to transfer the data
into the TDAT3 register, again. Before the DMA-based operation, users should configure the control information
on DMA, such as TCON3[5:3] to "010", TDAT3, destination address, source address, and so on. This kind of
DMA-based timer operation is very helpful to generate the pre-defined timing event or the sound using PWM.

TIMER S3C3410X RISC MICROPROCESSOR

8-6

TIMER SPECIAL FUNCTION REGISTER

TIMER CONTROL REGISTERS

Register Offset
Address

R/W Description Reset
Value

TCON0 0x9003 R/W Timer 0 control register 0x00

TCON1 0x9013 R/W Timer 1 control register 0x00

TCON2 0x9023 R/W Timer 2 control register 0x00

TCON3 0x9033 R/W Timer 3 control register 0x00

TCON4 0x9043 R/W Timer 4 control register 0x00

TCON0, 1, 2 Bit Description Initial State

Reserved [1:0] Reserved 00

ICS [2] Timer Input Clock Selection: This bit can determine the input
clock source of Timer.
0 = Internal Clock 1 = External Clock

0

OMS [5:3] Timer Operating Mode Selection: This field can determine the
operating mode of Timer.
000 = Interval mode operation
001 = Match & overflow mode operation
010 = Match & DMA mode operation (Timer1 Only)
100 = Capture on falling edge of TCAP0, 1, and 2
101 = Capture on rising edge of TCAP0, 1, and 2
110 = Capture on rising or falling edges of TCAP0, 1, and 2

000

CL [6] Timer Counter Clear: This bit can clear the content of timer
counter register.
0 = No effect 1 = Clearing the counter register

0

TEN [7] Timer Enable: This bit can enable or disable of Timer
functionality.
0 = Disable (Stop) 1 = Enable (Start)

0

S3C3410X RISC MICROPROCESSOR TIMER

8-7

TCON3, 4 Bit Description Initial State

CD [1:0] Clock Divider of Internal Clock Source:
This field can determine the divider factor of timer clock source.
This bit is only effective when users take the timer clock source
as internal CPU clock. In other word, this is effective when ICS
bit is set to "0".
00 = 1/16 01 = 1/8 10 = 1/4 11 = 1/2

00

ICS [2] Timer Input Clock Selection: This bit can determine the input
clock source of Timer.
0 = Internal Clock 1 = External Clock

0

OMS [5:3] Timer Operating Mode Selection: This field can determine the
operating mode of Timer.
000 = Interval mode operation
001 = PWM Mode
010 = Match & DMA mode operation (Timer3 Only)
100 = Capture on falling edge of TCAP3, and 4
101 = Capture on rising edge of TCAP3, and 4
110 = Capture on rising or falling edges of TCAP3, and 4

000

CL [6] Timer Counter Clear: This bit can clear the content of timer
counter register.
0 = No effect 1 = Clearing the Counter register

0

TEN [7] Timer Enable: This bit can enable or disable of Timer
functionality.
0 = Disable (Stop) 1 = Enable (Start)

0

NOTES:
1. Timer is continuously operated by one time enabling.
2. If FIFO is enabled in PWM mode, data is not stored into TDAT4. So to store data into TDAT4, FIFO should be disabled.

TIMER S3C3410X RISC MICROPROCESSOR

8-8

TIMER FIFO CONTROL REGISTERS

Register Offset
Address

R/W Description Reset
Value

TFCON 0x904f R/W FIFO control register of Timer 4 0x0

TFCON Bit Description Initial State

FEN [0] FIFO Enable: This bit can determine whether or not to use the
FIFO
0 = FIFO disable 1 = FIFO enable

0

FCL [1] FIFO Reset: This bit can clear the content of Timer FIFO. This
bit is automatically cleared after clearing FIFO.
0 = Normal mode 1 = FIFO clearing

0

FTL [3:2] FIFO Trigger Level: This field can determine the trigger level of
FIFO empty interrupt.
00 = Empty 01 = 1 byte
10 = 2 byte 11 = 4 byte

00

FR [5:4] FIFO Repeat: This field can determine the number of the usage
of FIFO data. The seven repeat means that each FIFO data
should be used in Timer seven times before taking next data in
FIFO.
00 = No effect 01 = One repeat
10 = Three repeat 11 = Seven repeat

00

TIMER FIFO STATUS REGISTERS

Register Offset
Address

R/W Description Reset
Value

TFSTAT 0x904e R FIFO status register of Timer 4 0x0

TFSTAT Bit Description Initial State

FC [2:0] FIFO Count: Number of data in Timer FIFO 000

FF [3] FIFO Full: This bit is automatically set to "1" whenever Timer
FIFO is full in case of the FIFO enable
0 = 0 ≤ Timer FIFO Data ≤ 4
1 = Full

0

S3C3410X RISC MICROPROCESSOR TIMER

8-9

TIMER PRESCALER REGISTERS

Register Offset
Address

R/W Description Reset
Value

TPRE0 0x9002 R/W Timer 0 pre-scale register 0xff

TPRE1 0x9012 R/W Timer 1 pre-scale register 0xff

TPRE2 0x9022 R/W Timer 2 pre-scale register 0xff

TPRE3 0x9032 R/W Timer 3 pre-scale register 0xff

TPRE4 0x9042 R/W Timer 4 pre-scale register 0xff

TPREx Bit Description Initial State

Pre-scale [7:0] This field can determines pre-scale value for Timer 0,1,2,3, and 4 0xff

TIMER 0, 1, AND 2 DATA REGISTERS

Register Offset
Address

R/W Description Reset
Value

TDAT0 0x9000 R/W Timer 0 data register 0xffff

TDAT1 0x9010 R/W Timer 1 data register 0xffff

TDAT2 0x9020 R/W Timer 2 data register 0xffff

TDAT0,1,2 Bit Description Initial State

Data [15:0] This field can determine the data value for Timer 0,1, and 2 0xffff

TIMER S3C3410X RISC MICROPROCESSOR

8-10

TIMER 3 AND 4 DATA REGISTER & FIFO REGISTERS

Register Offset
Address

R/W Description Reset
Value

TDAT3 0x9031 R/W Timer 3 data register 0xff

TDAT4 0x9041 R/W Timer 4 data register 0xff

TFB4 0x904b R/W Timer 4 FIFO register @ byte access, FIFO 0x0

TFHW4 0x904a R/W Timer 4 FIFO register @ half-word access, FIFO 0x0

TFW4 0x9048 R/W Timer 4 FIFO register @ word access, FIFO 0x0

TDAT3, 4: Non FIFO mode, Byte access (by STRB)

TDAT3, 4 Bit Size Description Initial State

TDATA [7:0] Timer data for Timer 3 and 4 0xff

TFB4: Byte access, FIFO Mode

TFB4 Bit Size Description Initial State

TDATA [7:0] Timer data for Timer 4
FC(FIFO Count) = FC(FIFO Count) + 1

0x0

TFHW4: Half-word access, FIFO Mode

TFHW4 Bit Size Description Initial State

TDATA 8 Bit
8 Bit

Timer data0 for Timer 4
Timer data1 for Timer 4
FC(FIFO Count) = FC(FIFO Count) + 2

0x0

TFW4: Word access, FIFO Mode

TFW4 Bit Size Description Initial State

TDATA 8 Bit
8 Bit
8 Bit
8 Bit

Timer data0 for Timer 4
Timer data1 for Timer 4
Timer data2 for Timer 4
Timer data3 for Timer 4
FC(FIFO Count) = FC(FIFO Count) + 4

0x0

S3C3410X RISC MICROPROCESSOR TIMER

8-11

TIMER 0, 1, AND 2 COUNT REGISTERS

Register Offset
Address

R/W Description Reset
Value

TCNT0 0x9006 R Timer 0 count register 0x0

TCNT1 0x9016 R Timer 1 count register 0x0

TCNT2 0x9026 R Timer 2 count register 0x0

TDAT0,1,2 Bit Description Initial State

CV [15:0] This field contains the current timer's count value during the
normal operation

0x0

TIMER 3 AND 4 COUNT REGISTERS

Register Offset
Address

R/W Description Reset
Value

TCNT3 0x9037 R Timer 3 count register 0x0

TCNT4 0x9047 R Timer 4 count register 0x0

TDAT3, 4 Bit Size Description Initial State

CV [7:0] This field contains the current timer's count value during the
normal operation

0x0

TIMER S3C3410X RISC MICROPROCESSOR

8-12

NOTES

S3C3410X RISC MICROPROCESSOR UART

9-1

9 UART

OVERVIEW

The UART(Universal Asynchronous Receiver and Transmitter) in S3C3410X can support one asynchronous
serial I/O ports. The UART can be operated by the interrupt-based or DMA-based mode. In other words, the
UART can generate an interrupt or DMA request to prepare the data to be sent, or to store the received data into
the memory. It has two 8-byte FIFOs for receive and transmit. One is for receiving FIFO and the other is for
transmitting FIFO. The functionality of UART includes the programmable baud-rate, frame format suitable for
infra-red (IrDA ver. 1.0) transmit/receive, programmable number of stop bit insertion, programmable data width of
5, 6, 7, and 8-bit, and parity checking/attaching capability of received/transmitted data.

The UART has a baud-rate generator, transmitter/receiver block and their control unit as shown in Figure 9-1.
The baud-rate generator can generate the suitable baud rate for UART by using MCLK. To generate the proper
baud rate, users should configure the proper division rate of MCLK in special register in baud rate generator. To
support the higher baud rate, the UART in S3C3410X has internal 8-byte FIFO. The data in FIFO should be
transferred into Transmitter Shifter for TX and data in Receive Shifter should be moved into FIFO for RX. The TX
data in Transmitter Shifter will be shifted out through the UTXD pin for TX case. Also, the data on URXD will also
be shifted in Receive Shifter for RX case.

Transmit Shifter

Transmitter

Transmit FIFO(8 Byte)

Baud-rate
Generator

Receive Shifter

Receive FIFO(8 Byte)

Receiver

Control
Unit

UTXD

URXD

Clock
Source

Figure 9-1. UART Block Diagram with FIFO

UART S3C3410X RISC MICROPROCESSOR

9-2

UART FUNCTION DESCRIPTION

UART OPERATION

The following section describe the operation of UART which include the data transmission, data reception,
interrupt generation, baud-rate generation, loopback mode, infra-red mode, and so on.

Data Transmission

The data frame for transmission is programmable. It can have several options regarding to the data size, number
of stop bit, parity checking capability, and so on, which can be specified in the Line Control Register(ULCON).
Sometimes, users need to send the break condition during the sending the UART frame. The break condition can
be realized by writing SBS bit in UCON register. If users write the SBS bit in UCON register during the UART
frame sending, the break condition forces the serial output to logic 0 state at least for longer time than one frame
transmission after successful sending the current UART frame. This break condition will be automatically cleared
after one frame of break time. The UART will send the frame data again after break time. On the receive side, if
the receive controller recognize the break condition from Transmitter, there will be break interrupt to CPU.

The data transmission process is shown in Figure 9-2. The transmitter should transfer the data through a path as
follows: data source -> transmit holding(transmit FIFO) register -> transmit shifter -> UTXD pin. Two flags(status
signals) such as transmit holding(transmit FIFO) register empty and transmitter empty, are used to indicate the
status of the transmit holding(transmit FIFO) register and transmitter.

START

UBRDIV, ULCON, UCON
is configured

 Transmit holding
register empty?

Transfer the data to
transmit shifter

Set the transmit holding
register empty flag

After shift out last stop bit,
Set the transmitter empty flag

Y

N

Figure 9-2. UART Data Transmission Process

S3C3410X RISC MICROPROCESSOR UART

9-3

Data Reception

The RX block of UART can also support several options necessary for UART frame receiving as similar with TX.
It can support the option on data size, number of stop bit, parity checking capability, and so on, which can also be
specified in the Line Control Register(ULCON). The receiver block of UART can detect the erroneous such as
overrun error, parity error, frame error and break condition from TX.

The overrun error indicates that new data has overwritten the previously received data before the previous one
has been read. The parity error indicates that the receiver has detected a parity error, which is due to different
parity bit from the expectation. The frame error indicates that the received data does not have a valid stop bit in
terms of frame boundary. The break condition indicates that the URXD input is held in the logic 0 state at least for
longer time than one frame transmission. The receive time-out condition occurs when the UART receiver does
not receive the data during the necessary time of 3 half-word (6 bytes) transmission when the Rx FIFO is not
empty state in FIFO mode.

The data reception process is shown in Figure 9-3. The receiver transfer data through a path as follows: URXD
pin -> receive shifter register -> receive buffer register -> destination. A receive buffer (receive FIFO) full flag as
well as several error flags during the reception can be used to indicate the status of the receive buffer (receive
FIFO) register.

START

UBRDIV, ULCON, UCON
is configured

Data reception
detected ?

Transfer the data to
receive shifter

Set the receive buffer
(receive FIFO) full flag

N

Y

Receive data into receive
shifter from URXD pin

Figure 9-3. UART Data Reception Process

UART S3C3410X RISC MICROPROCESSOR

9-4

Interrupt / DMA Request Generation

The UART of S3C3410X has eight status signals: overrun error, parity error, frame error, break, receive FIFO
ready, receiver time out, transmit FIFO empty and transmitter empty, which are specified in the corresponding
UART status register(USTAT).

The overrun error, parity error, frame error and break condition are referred to as the receive status, each of
which can cause the receive status interrupt request if the receive status interrupt enable bit is set to one in the
control register(UCON). When a receive status interrupt request is detected, users can know the interrupt source
by reading the content of UCON register.

When the receiver transfers the data in the receive shifter to the receive FIFO, there will be the activation of the
receive FIFO ready status signal, which will cause the receive interrupt if the receive mode in control register is
selected as the interrupt mode.

When the transmitter transfers the data in the transmit FIFO to transmit shifter, there will be the activation of the
transmit FIFO empty status signal, which will cause the transmit interrupt if the transmit mode in control register
is selected as the interrupt mode.

The receive FIFO ready and transmit FIFO empty status signals can also be connected to generate the DMA
request signals if the receive/transmit mode is selected as the DMA mode.

Interrupt generation relating with FIFO

Type FIFO Mode Non-FIFO Mode

Rx Interrupt When UART receive one frame data, it
should move the data into FIFO. After
loading the data into FIFO, it should
determine whether an interrupt should be
generated by looking the FIFO trigger level,
or not.

When UART receives one frame data
successfully, it will generate an interrupt.

Tx Interrupt When UART transmit one frame data, it
should extract the data from FIFO. After
extracting the data from FIFO, it should
determine whether an interrupt should be
generated by looking the FIFO trigger level,
or not.

When UART transmits one frame data
successfully, it will generate an interrupt.

Error Interrupt When UART detects the frame error, parity
error and break condition, it does not
generate the interrupt immediately. The
UART will move the data into receive FIFO
and it will generate the interrupt when the
data move to the top of receive FIFO.
However, an overrun error as well as receive
time-out should generate an interrupt
immediately.

All erroneous condition should generate an
error interrupt immediately. However, if
several interrupt happen simultaneously, the
interrupt routine should discriminate the
interrupt source by looking the content of
UCON register.

S3C3410X RISC MICROPROCESSOR UART

9-5

Baud Rate Generation

The UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the
baud-rate generator should be the S3C3410X's internal system clock. The baud-rate clock is generated by
dividing the source clock by 16 and a 16-bit divisor specified by the UART baud-rate divisor register (UBRDIV).
The UBRDIV can be determined as follows:

UBRDIV = (round_off) { MCLK / (Transfer rate × 16) } – 1

Where the divisor should be from 1 to (216 – 1). For example, if the baud-rate is 115200bps and MCLK is 40MHz,
UBRDIV is:

UBRDIV = (int) { MCLK / (Transfer rate × 16) + 0.5 } – 1

 = (int) { 40000000 / (115200 * 16) + 0.5 } – 1 = (int) (21.7 + 0.5) – 1

 = 22 – 1 = 21

Loop Back Mode

The S3C3410X UART can support a test mode, so called the loop back mode. In this mode, the transmitted data
from UART Tx module is immediately received through UART Rx module via internal connection between Tx
and Rx module. This feature allows that the processor can verify the internal transmit/receive data path of UART
channel. This mode can be selected by setting the loop back bit in the UART control register(UCON).

Infra Red(IrDA) Mode

The UART in S3C3410X can support the frame of infra-red (IrDA) transmit and receive, which can be selected
by setting the infra-red bit in the UART control register (UCON). As shown in Figure 9-4, we should have IrDA Tx
Encoder and Rx Decoder, which is different from the normal UART operation mode. By using the specific
Decoder/Encoder for IrDA, the signal frame in IrDA is different from the normal signal frame of UART, which is
shown in Figure 9-5, 9-6 and 9-7. In IrDA transmit mode, the transmitter should pulse 3/16 duty to represent a
zero data as shown in Figure 9-6. In IrDA receive mode, the receiver should detect the 3/16 pulsed period to
recognize a zero data as shown in Figure 9-7.

IrDA Tx
Encoder

IrDA Tx
Encoder

TxD

IRS

RxD

RE

UART
Block

UTXD

URXD

0

1

0

1

Figure 9-4. IrDA Function Block Diagram

UART S3C3410X RISC MICROPROCESSOR

9-6

Start
Bit

Stop
Bit

1 1 1 1 10 0 0 0 0

Data Bit

UART Frame

Figure 9-5. Serial I/O Frame Timing Diagram (Normal UART)

Start
Bit

Stop
Bit

1 1 1 1 10 0 0 0 0

Data Bit

IR Transmit Frame

Bit
Time

Pulse Width = 3/16 Bit Frame

Figure 9-6. Infra Red(IrDA) Transmit Mode Frame Timing Diagram

Start
Bit

Stop
Bit

1 1 1 1 10 0 0 0 0

Data Bit

IR Receive Frame

Figure 9-7. Infra Red(IrDA) Receive Mode Frame Timing Diagram

S3C3410X RISC MICROPROCESSOR UART

9-7

UART SPECIAL FUNCTION REGISTERS

UART LINE CONTROL REGISTER (ULCON)

This is UART line control register, ULCON, is used to control UART block.

Register Offset
Address

R/W Description Reset
Value

ULCON 0x5003 R/W UART line control register 0x0

ULCON Bit Description Initial State

WL [1:0] Word Length: The word length indicates the number of data bit
to be transmitted or received per frame
00 = 5-bits 01 = 6-bits
10 = 7-bits 11 = 8-bits

00

SB [2] Number of Stop Bit: The number of stop bit per frame should
be specified by using SB.
0 = One stop bit per frame 1 = Two stop bit per frame

0

PMD [5:3] Parity Mode: The parity mode can specify the parity mode.
When the parity mode is enabled, the parity generation for Tx
and parity checking for Rx will be performed automatically
during the Tx and Rx operation of UART.
0xx = No parity
100 = Odd parity
101 = Even parity

000

IRM [6] Infra-Red Mode : The Infra-Red mode can determine whether
or not to be use the Infra-Red mode.
0 = Normal mode operation 1 = Infre-Red Tx/Rx mode

0

UART S3C3410X RISC MICROPROCESSOR

9-8

UART CONTROL REGISTER (UCON)

Register Offset
Address

R/W Description Reset
Value

UCON 0x5007 R/W UART control register 0x0

UCON Bit Description Initial State

RM [1:0] Receive Mode: This field can determine the operation mode of
UART. The UART can be operated by DMA as well as interrupt
mechanism. If the interrupt is not enabled, it is polling mode.
00 = Disable 01 = Interrupt request or polling mode
10 = DMA0 request 11 = DMA1 request

00

TM [3:2] Transmit Mode: This field can determine the operation mode of
UART. The UART can be operated by DMA as well as interrupt
mechanism. If the interrupt is not enabled, it is polling mode.
00 = Disable 01 = Interrupt request or polling mode
10 = DMA0 request 11 = DMA1 request

00

SBS [4] Send Break Signal: Setting this bit can cause the UART to send
a break signal.
0 = Normal transmit 1 = Send break signal

0

LBM [5] Loop Back Mode: Setting loop back bit to "1" can cause the
UART to enter loop back mode. The Loop Back Mode means the
internal connection between Tx and Rx module for test purpose.
0 = Normal operation 1 = Loopback mode

0

RSIE [6] Rx Status Interrupt Enable: This bit enables the UART to
generate an interrupt if an exception, such as a break, frame
error, parity error, or overrun error occurs during a receive
operation.
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

0

RXTOEL [7] Rx Time Out Enable: Enable/Disable Rx time out interrupt. This
bit is only effective when the FIFO is enabled.
0 = Disable 1 = Enable

0

S3C3410X RISC MICROPROCESSOR UART

9-9

UART STATUS REGISTER (USTAT)

The UART status register, USTAT, is a read-only register which is used to monitor the status during the operation
of serial I/O in the UART

Register Offset
Address

R/W Description Reset
Value

USTAT 0x500b R UART status register 0xc0

USTAT Bit Description Initial State

OE [0] Overrun Error: This bit is automatically set to "1" whenever an
overrun error occurs during the receive operation.
0 = No overrun error during receive 1 = Overrun error

0

PE [1] Parity Error: This bit is automatically set to "1" whenever an
parity error occurs during the receive operation.
0 = No parity error during receive 1 = Parity error

0

FE [2] Frame Error: This bit is automatically set to "1" whenever an
frame error occurs during the receive operation.
0 = No frame error during receive 1 = Frame error

0

BD [3] Break Detect: This bit is automatically set to "1" to indicate that
a break signal has been received.
0 = No break received 1 = Break received

0

RTO [4] Receiver Time Out: This bit is automatically set to "1" whenever
a receiver time out occurs during the receive operation.
0 = No receiver time out during receive
1 = Generate receiver time out

0

RFDR [5] Receive FIFO Data Ready / Receive Buffer Data Ready: This
bit is automatically set to "1" whenever the receiver is ready to
receive the data through the URXD pin.
0 = Completely empty
1 = 1-byte ≤ Rx FIFO Data ≤ 8-byte @ FIFO mode
 The buffer register has a received data @ Non FIFO mode

0

TFE [6] Transmit FIFO Empty / Transmit Holding Register Empty:
This bit is automatically set to "0" whenever the transmitter has
the valid data for sending.
0 = 1-byte ≤ FIFO ≤ 8-byte @ FIFO mode
 The holding register is not empty @ Non FIFO mode
1 = Empty

1

TSE [7] Transmit Shift Register Empty: This bit is automatically set to
"1" whenever the transmit shift register does not have a valid
data for sending.
0 = Not empty
1 = Transmit holding & shifter register empty

1

UART S3C3410X RISC MICROPROCESSOR

9-10

UART FIFO CONTROL REGISTER (UFCON)

Register Offset
Address

R/W Description Reset
Value

UFCON 0x500f R/W UART FIFO control register 0x0

UFCON Bit Description Initial State

FE [0] FIFO Enable: This bit can determine whether or not to use the
FIFO mode.
0 = FIFO Disable 1 = FIFO enable

0

RFR [1] Receive FIFO Reset: To reset the receive FIFO, user should set
RFR bit.
0 = Normal mode 1 = Rx FIFO reset

0

TFR [2] Transmit FIFO Reset: To reset the transmit FIFO, user should
set TFR bit.
0 = Normal mode 1 = Tx FIFO reset

0

Reserved [3] Reserved 0

RFTL [5:4] Receive FIFO Trigger Level for Interrupt Generation: This
field can determine the interrupt trigger level of receive FIFO.
00 = 2 byte 01 = 4 byte
10 = 6 byte 11 = 8 byte

00

TFTL [7:6] Transmit FIFO Trigger Level for Interrupt Generation: This
field can determine the interrupt trigger level of transmit FIFO.
00 = Empty 01 = 2 byte
10 = 4 byte 11 = 6 byte

00

S3C3410X RISC MICROPROCESSOR UART

9-11

UART FIFO STATUS REGISTER (UFSTAT)

Register Offset
Address

R/W Description Reset
Value

UFSTAT 0x5012 R UART FIFO control register 0x0

UFSTAT Bit Description Initial State

RFC [2:0] Receive FIFO Count: This field can indicate the number of
current data in Receive FIFO.

000

TFC [5:3] Transmit FIFO Count: This field can indicate the number of
current data in Transmit FIFO.

000

RFF [6] Receive FIFO Full: This bit is automatically set to "1" whenever
receive FIFO is full during receive operation.
0 = 0 ≤ Rx FIFO Data ≤ 7 byte
1 = Full

0

TFF [7] Transmit FIFO Full: This bit is automatically set to "1"
whenever transmit FIFO is full during transmit operation.
0 = 0 ≤ Rx FIFO Data ≤ 7 byte
1 = Full

0

EIF [8] Error in FIFO: This bit represent that there is not valid data in
the receive FIFO.
0 = All data in receive FIFO are valid
1 = Some data in receive FIFO is not valid.

0

UART S3C3410X RISC MICROPROCESSOR

9-12

UART TRANSMIT HOLDING REGISTER & FIFO REGISTERS

Register Offset
Address

R/W Description Reset
Value

UTXH 0x5017 W UART transmit holding register 0x0

UTXH_B 0x5017 W UART transmit FIFO register @ byte access 0x0

UTXH_HW 0x5016 W UART transmit FIFO register @ half-word access 0x0

UTXH_W 0x5014 W UART transmit FIFO register @ word access 0x0

UTXH Bit Description Initial State

TXDATA [7:0] This field represents the data to be transmitted through TX
module in UART. When users write the data in this register, the
transmit holding register empty bit(TFE) in the status register
should be set to "0". This bit is for preventing the overwriting on
transmitted data that may already be existed in the UTXH
register. Users should update the UTXH after checking TFE bit.
Whenever the UTXH is written with new value, the transmit
register empty bit(TFE) will be automatically cleared to "0"

0x0

UTXH_B : Byte Access, FIFO Mode

UTXH_B Bit Description Initial State

TXDATA0 [7:0] Transmit data for UART;
When users write the byte data in this register,
FIFO_COUNT = FIFO_COUNT + 1

0x0

UTXH_HW : Half-word Access, FIFO Mode

UTXH_HW Bit Description Initial State

TXDATA0
TXDATA1

[7:0]
[15:8]

Transmit data0 for UART
Transmit data1 for UART
When users write the half-word data in this register,
FIFO_COUNT = FIFO_COUNT + 2

0x0
0x0

UTXH_W : Word Access, FIFO Mode

UTXH_W Bit Description Initial State

TXDATA0
TXDATA1
TXDATA2
TXDATA3

[7:0]
[15:8]
[23:16]
[31:24]

Transmit data0 for UART
Transmit data1 for UART
Transmit data2 for UART
Transmit data3 for UART
When users write the word data in this register,
FIFO_COUNT = FIFO_COUNT + 4

0x0
0x0
0x0
0x0

S3C3410X RISC MICROPROCESSOR UART

9-13

UART RECEIVE BUFFER REGISTER & FIFO REGISTERS

Register Offset
Address

R/W Description Reset
Value

URXH 0x501b W UART receive buffer register –

URXH_B 0x501b W UART receive FIFO register @ byte access –

URXH_HW 0x501a W UART receive FIFO register @ half-word access –

URXH_W 0x5018 W UART receive FIFO register @ word access –

URXH Bit Description Initial State

RXDATA [7:0] This field represents the data to be received through RX module
in UART. When users read the data in this register, the receive
buffer data ready bit(RFDR) in the status register should be set
to "0". This bit is for preventing the reading the invalid received
data in the URXH register before successful reception. Users
should read the URXH after checking RFDR bit. Whenever the
URXH is read, the receive buffer data ready bit(RFDR) in the
status register will be automatically cleared to "1"

–

URXH_B : Byte Access, FIFO Mode

URXH_B Bit Description Initial State

RXDATA0 [7:0] Receive data for UART;
When users read the byte data in this register,
FIFO_COUNT = FIFO_COUNT + 1

–

URXH_HW : Half-word Access, FIFO Mode

URXH_HW Bit Description Initial State

RXDATA0
RXDATA1

[7:0]
[15:8]

Receive data0 for UART
Receive data1 for UART
When users read the half-word data in this register,
FIFO_COUNT = FIFO_COUNT + 2

–

URXH_W : Word Access, FIFO Mode

URXH_W Bit Description Initial State

RXDATA0
RXDATA1
RXDATA2
RXDATA3

[7:0]
[15:8]
[23:16]
[31:24]

Receive data0 for UART
Receive data1 for UART
Receive data2 for UART
Receive data3 for UART
When users read the word data in this register,
FIFO_COUNT = FIFO_COUNT + 4

–

UART S3C3410X RISC MICROPROCESSOR

9-14

UART BAUD RATE DIVISOR REGISTER (UBRDIV)

The value in the baud rate divisor register, UBRDIV, can be used to determine the UART Tx/Rx clock rate(baud
rate) as follows:

UBRDIV = (round_off) { MCLK / (transfer rate × 16) } – 1

Where the divisor should be from 1 to (216 – 1). For example, if the baud-rate is 115200bps and MCLK is 40MHz,
UBRDIV is:

UBRDIV = (int) { MCLK / (Transfer rate × 16) + 0.5 } – 1

 = (int) { 40000000 / (115200 * 16) + 0.5 } – 1 = (int) (21.7 + 0.5) – 1

 = 22 – 1 = 21

Register Offset
Address

R/W Description Reset
Value

UBRDIV 0x501e R/W Baud rate divisor register for UART 0x0

UBRDIV Bit Description Initial State

UBRDIV [15:0] Baud rate divisor value 0x0

S3C3410X RISC MICROPROCESSOR SIO

10-1

10 SIO (SYNCHRONOUS I/O)

OVERVIEW

The S3C3410X SIO(Synchronous I/O) can interface with various types of external devices which requires the
serial data transfer/receive. The SIO module can transmit or receive 8-bit serial data at a frequency determined
by its corresponding control register. To ensure the flexible data transmission rate, users can select an internal or
external clock source.

MCLK
8-bit

Prescaler

SIOCLK

8-bit SIO
Shift Buffer

SIO Control Logic

3-bit Counter

8

Data Bus

SIORXD

SIOTXD

SIORDY

SIOINT

Figure 10-1. SIO Function Block Diagram

SIO S3C3410X RISC MICROPROCESSOR

10-2

SIO FUNCTION DESCRIPTION

NON-DMA MODE OPERATION

Transmit and Receive By Synchronous Serial Line

The 8-bit data can be transmitted and received through SIO port. The serial output data can go out through a
serial output pin(SIOTXD), and the serial input data can come through a serial input pin(SIORXD). In this case,
the data should be sent and received synchronously by serial clock pin(SIOCLK). After transmitting or receiving
data, the SIO interrupt request will be activated if users enable an interrupt for SIO TX and RX. Because of the
separate hardware for TX and RX, the dual operation of TX and RX is possible. If users want to use the receiving
operation, users can treat the receive data as dummy one.

The TX and RX rate can be controlled by having the appropriate configuration in the SIOCON and SBRDR
registers. The clock source of serial interface can be an internal or external clock. In other words, the TX and RX
rate are programmable and users can determine the rate by having a suitable configuration in the SIOCON and
SBRDR registers.

Programming Procedure

When users write a byte data into the SIODAT register, the SIO will start to transmit a data if the SIO run bit is
set and the transmit mode bit is enabled.

To program the operation of SIO modules, please take following steps:

1. Configure the multiplexed I/O pins as SIO related ones(SIOTXD, SIORXD, SIOCLK, and SIORDY).

2. Configure the SIOCON register to have a necessary functionality of the serial I/O module.

3. For the operation of interrupt mode in SIO, configure the interrupt mode in SIOCON register and enable
interrupt-relating bits in interrupt controller.

4. In case of interrupt mode for TX, users should write a data to be transmitted in SIODAT, first. To start the
transmission, users should write SB(SIO Start) bit in SIOCON register. After transmission, there should be
SIO interrupt. In case of interrupt mode of RX, there will be SIO interrupt after receipt. To start the receiving
operation, users should write SB bit in SIOCON register.

5. Go to step 4 if users need interrupt-based SIO operation more.

S3C3410X RISC MICROPROCESSOR SIO

10-3

SIOCLK

SIORXD

SIOTXD

SIOCON
Start Bit

DO7

DI7

DO6

DI6

DO5

DI5

DO4

DI4

DO3

DI3

DO2

DI2

DO1

DI1

DO0

DI0

Transmit
Complete

Figure 10-2. Synchronous I/O Timing Transmit/Receive Mode (Tx at Falling)

SIOCLK

SIORXD

SIOTXD DO7

DI7

DO6

DI6

DO5

DI5

DO4

DI4

DO3

DI3

DO2

DI2

DO1

DI1

DO0

DI0

SIOCON
Start Bit

Transmit
Complete

Figure 10-3. Synchronous I/O Transmit/Receive Mode (Tx at Rising)

SIO S3C3410X RISC MICROPROCESSOR

10-4

DMA MODE OPERATION

Hand-Shaking Mode (Flag Run Mode)

In case of DMA-base SIO operation, there can be consecutive frame TX and RX. Between frames(for example,
TX frame and next TX frame), SIO can watch the SIORDY signal to check whether receiving SIO is busy, or not.
This is Hand-Shaking Mode. If RX SIO is not ready, TX SIO can not send the frame and should wait until RX SIO
is available. To indicate the busy state, SIORDY signal should below.

Non Hand-Shaking Mode (Auto Run Mode)

The Non-Hand-Shaking Mode means that SIO can transmit its data without watching SIORDY signal during the
consecutive operation. In stead of watching SIORDY signal, users can have programmable duration between
frames. The duration can be specified in IVTCNT register in SIO module.

Steps for Transmit by DMA

1. For the operation of DMA mode for TX in SIO, have a suitable configuration in DMA-related register in DMA
controller, first. The TRS bit in SIOCON register should be 1.

2. Configure the DMA mode in SIOCON register.

3. The SIO requests DMA service

4. The SIO transmits the data (The first transmitted data is in the first source address of DMA)

5. Go to step 3 until DMA count is "0"

Steps for Receive by DMA

1. For the operation of DMA mode for RX in SIO, have a suitable configuration in DMA-related register in DMA
controller, first. The TRS bit in SIOCON register should be 0.

2. Configure the DMA mode in SIOCON register. The SB(SIO Start) bit should also be set.

3. The SIO requests the DMA service after 8-bit data has been received.

4. Go to step 4 until DMA count is "0"

S3C3410X RISC MICROPROCESSOR SIO

10-5

SIORDY

SIOCLK

SIOTXD
SIORXD

SIOCON
Start Bit

Transmit
Complete

DMA Condition Setting
~~

~~
~~

~~
~~

~~ ~~
~~

~~
~~

~~
~~

~~
~~

Figure 10-4. Synchronous I/O Timing in Hand-shaking Mode (Flag Run Mode)

SIOCLK

SIOTXD
SIORXD

SIOCON
Start Bit

Transmit
Complete

DMA Condition Setting

Interval Time

~~
~~

~~
~~

Figure 10-5. Synchronous I/O Timing in Non Hand-shaking Mode (Auto Run Mode)

SIO S3C3410X RISC MICROPROCESSOR

10-6

SYNCHRONOUS I/O SPECIAL FUNCTION REGISTERS

SYNCHRONOUS I/O CONTROL REGISTERS (SIOCON0, SIOCON1)

There are two control register for synchronous I/O interface module, SIOCON0 and SIOCON1. To determine the
SIO operation, users should configure a necessary option on this register.

Register Offset
Address

R/W Description Reset
Value

SIOCON0 0x6003 R/W Synchronous I/O 0 control register 0x0

SIOCON1 0x7003 R/W Synchronous I/O 1 control register 0x0

SIOCONx Bit Description Initial State

MODE [1:0] SIO Mode Selection: This field can determine the SIO
operation mode for SIO TX and RX.
00 = Disable 01 = SIO interrupt
10 = DMA0 request 11 = DMA1 request

00

HSE [2] Hand-Shaking Mode Enable: In DMA-based SIO operation,
users can have Hand-Shaking or Non-Hand-Shaking mode. In
Hand-Shaking mode, SIO controller should watch SIORDY
signal before the sending of next frame. In Non-Hand-Shaking
mode, users can have programmable duration between
consecutive frames.
0 = Non hand-shaking mode (Auto run mode)
1 = Hand-shaking mode (Flag run mode)

0

SB [3] SIO Start: To start SIO operation, users should set this bit.
0 = No action
1 = Clear 3-bit counter and start shift

0

CES [4] Clock Edge Select: This bit can determine what clock edge
should be used for serial transmission. If this bit is set to "0" for
transmission, the transmitting operation is executed at the falling
edge, and the receiving operation is executed at the rising edge.
0 = Falling edge clock to Tx 1 = Rising edge clock to Tx

0

TRS [5] Transmit/Receive Selection: This bit can decide that the
current SIO is configured as receiver only, or
transmitter/receiver. The receiver only mode is just for DMA-
based receive operation. For DMA-based TX and interrupt-based
TX/RX operation, users should have TRS as 1. In case of TX/RX
mode, SIO can receive the data from external device without
S/W control. In this case, users should determine whether the
received data is valid, or not.
0 = Received only mode 1 = Transmit/Receive mode

0

DD [6] Data Direction: This bit can control whether MSB should be
transmitted first or LSB is transmitted first.
0 = MSB mode 1 = LSB mode

0

CS [7] SIO Clock Source Selection: This bit can determine the clock
source for SIO.
0 = Internal Clock 1 = External Clock

0

S3C3410X RISC MICROPROCESSOR SIO

10-7

SIO DATA REGISTERS (SIODAT0, SIODAT1)

To send the data by SIO, users should write the data in the SIO data register (SIODAT0, SIODAT1) before
sending. As well as transmission, the received data can also be stored. Even if the receive operation can not be
controlled by S/W, the users should decide whether the received data is valid, or not. For example, this decision
can be made by the interrupt service routine. If users do not want the received data, users should think the data
in SIO data register as dummy one.

Register Offset
Address

R/W Description Reset
Value

SIODAT0 0x6002 R/W Synchronous I/O 0 data register 0x0

SIODAT1 0x7002 R/W Synchronous I/O 1 data register 0x0

SIODATx Bit Description Initial State

SIODATA [7:0] SIO Data: The field represent the data to be transmitted or
received over the SIO channel.

0x0

SIO BAUD RATE PRESCALER REGISTERS (SBRDR0, SBRDR1)

The value stored in the baud rate divisor register (SBRDR0, SBRDR1), allows users to determine the SIO clock
rate (baud rate) as follows:

Baud rate = CKIN / { 2 × (divisor value + 1) }

Register Offset
Address

R/W Description Reset
Value

SBRDR0 0x6001 R/W Synchronous I/O 0 baud rate pre-scale register 0x0

SBRDR1 0x7001 R/W Synchronous I/O 1 baud rate pre-scale register 0x0

SIODATx Bit Description Initial State

Pre-scale [7:0] The field has a pre-scale value for generating the baud rate. 0x0

SIO S3C3410X RISC MICROPROCESSOR

10-8

SIO INTERVAL COUNTER REGISTERS (ITVCNT0, ITVCNT1)

In case of the non hand-shaking mode(auto run mode), users should have the duration between consecutive
frames. The duration between frames can be calculated by below formula.

Intervals time(between 8-bit data) = (ITVCNT + 1) × 256 × 2 / CKIN

Register Offset
Address

R/W Description Reset
Value

ITVCNT0 0x6000 R/W Synchronous I/O 0 interval counter register 0x00

ITVCNT1 0x7000 R/W Synchronous I/O 1 interval counter register 0x00

ITVCNTx Bit Description Initial State

Count value [7:0] This field contains the interval time value for the DMA non hand-
shaking mode.

0x00

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-1

11 INTERRUPT CONTROLLER

OVERVIEW

In S3C3410X, there are 35 interrupt sources. Among them, 23 interrupt sources are coming from internal
peripheral devices like the DMA controller, UART, SIO, etc. Other 8 interrupt sources are coming from external
interrupt request pins like EINT0, EINT1, EINT2, EINT3, EINT8, EINT9, EINT10, and EINT11. The other 4 are
coming from external interrupt request pins like EINT4, EINT5, EINT6, and EINT7. Because these 4 external
interrupt requests should be OR-ed internally, we consider these external interrupt request sources as one
interrupt request source to CPU. In other word, the total interrupt request sources to CPU is 32, not 35.

Even if there are many interrupt request sources, the ARM7TDMI core can only recognize all interrupt as two
kinds of interrupt: a normal interrupt request(IRQ) and a fast interrupt request(FIQ). Therefore, all interrupt
sources in S3C3410X should be categorized as either IRQ or FIQ.

The multiple interrupt sources should be controlled by three kind of information in special registers in interrupt
controller. These are INTMOD, INTPND, and INTMSK register. The role of three registers in interrupt controller is
as follow.

In S3C3410X, the interrupt controller can support the interrupt base vector address as well as programmable
priority. To reduce the interrupt latency, the interrupt controller in S3C3410X can assign the hard-wired vector
address for each interrupt source. The total 32 interrupt request sources to CPU can have the programmable
priority. This kind of programmable priority can make users to have more intelligent interrupt handling.

• Interrupt Mode Register: Defines the interrupt mode for each interrupt source, which is IRQ or FIQ. By
having the configuration for each interrupt source in this register, users can allocate all interrupt sources as
IRQ or FIQ mode interrupt.

• Interrupt Pending Register: In CPU core, there is PSR(Processor Status Register) register, which has
several field including the interrupt relating I-Flag and F-Flag. As mentioned above, the CPU can accept two
kinds of interrupt even if there are many interrupt sources in S3C3410X. That is why all interrupt sources in
S3C3410X should be categorized into two mode, which is IRQ mode and FIQ mode. In this case, if CPU is
running the service for certain interrupt, and if this interrupt has IRQ mode, the other interrupt sources with
IRQ mode can not be serviced until the completion of current service. These interrupt should be pending in
IPR(Interrupt Pending Register). In case of FIQ mode, other FIQ interrupt request can not take CPU while the
current FIQ service is running as same as IRQ case. Therefore, the FIQ interrupt request should be pending in
IPR as same as IRQ. If IRQ interrupt service is running, the FIQ interrupt can take the CPU for service
because FIQ has higher priority than IRQ. In other word, ARM CPU can support two level interrupt
architecture. The pending interrupt service can start whenever the I-Flag or F-Flag should be cleared to "0".
The service routine should clear the pending bit, also.

• Interrupt Mask Register: If this mask bit is set, the corresponding interrupt request should be disabled. Users
can select the interrupt enable or disable by using this register. For masking(Disable the interrupt), the
corresponding mask bit should be "0".

INTERRUPT CONTROLLER S3C3410X RISC MICROPROCESSOR

11-2

INTERRUPT SOURCE

In S3C3410X, there are 35 interrupt sources. Among them, 23 interrupt sources are coming from internal
peripheral devices like the DMA controller, UART, SIO, etc. Other 8 interrupt sources are coming from external
interrupt request pins like EINT0, EINT1, EINT2, EINT3, EINT8, EINT9, EINT10, and EINT11. The other 4 are
coming from external interrupt request pins like EINT4, EINT5, EINT6, and EINT7. Because these 4 external
interrupt requests should be OR-ed internally, we consider these external interrupt request sources as one
interrupt request source to CPU. In other word, the total interrupt request sources to CPU is 32, not 35.

Sources Description Number

EINT0 External interrupt 0 0

EINT1 External interrupt 1 1

INT_URX UART receive interrupt 2

INT_UTX UART transmit interrupt 3

INT_UERR UART error interrupt 4

INT_DMA0 DMA0 interrupt 5

INT_DMA1 DMA1 interrupt 6

INT_TOF0 Timer 0 overflow interrupt 7

INT_TMC0 Timer 0 match/capture interrupt 8

INT_TOF1 Timer 1 overflow interrupt 9

INT_TMC1 Timer 1 match/capture interrupt 10

INT_TOF2 Timer 2 overflow interrupt 11

INT_TMC2 Timer 2 match/capture interrupt 12

INT_TOF3 Timer 3 overflow interrupt 13

INT_TMC3 Timer 3 match/capture interrupt 14

INT_TOF4 Timer 4 overflow interrupt 15

INT_TMC4 Timer 4 match/capture interrupt 16

INT_BT Basic Timer interrupt 17

INT_SIO0 SIO 0 interrupt 18

INT_SIO1 SIO 1 interrupt 19

INT_IIC IIC interrupt 20

INT_RTCA RTC alarm interrupt 21

INT_RTCT RTC time interrupt(SEC/MIN/HOUR) 22

INT_TF Timer4 FIFO interrupt 23

EINT2 External interrupt 2 24

EINT3 External interrupt 3 25

EINT4/5/6/7 External interrupt 4/5/6/7 26

INT_ADC ADC interrupt 27

EINT8 External interrupt 8 28

EINT9 External interrupt 9 29

EINT10 External interrupt 10 30

EINT11 External interrupt 11 31

NOTE: EINT4, EINT5, EINT6 and EINT7 are sharing the same interrupt request line. So, the ISR(Interrupt Service Routine)
can discriminate the interrupt request source by reading the EINTPND register because it has 4-bit for the interrupt
source of EINT4, EINT5, EINT6, and EINT7. The EINTPND has to be cleared by writing "0" in ISR

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-3

INTERRUPT CONTROLLER SPECIAL FUNCTION REGISTERS

INTERRUPT MODE REGISTER (INTMOD)

Each bit in INTMOD register can determine the interrupt mode of each interrupt request. In case of FIQ mode,
this bit should be "1". Otherwise, it means the IRQ mode interrupt. The FIQ mode has higher priority than IRQ
mode. During the service of IRQ, the FIQ mode interrupt can occupy the CPU for its service.

Register Offset
Address

R/W Description Reset
Value

INTMOD 0xc000 R/W Interrupt mode register
0 = IRQ mode 1 = FIQ mode

0x0

INTMOD Bit Description Initial State

EINT0 [0] 0 = IRQ mode 1 = FIQ mode 0

EINT1 [1] 0 = IRQ mode 1 = FIQ mode 0

INT_URX [2] 0 = IRQ mode 1 = FIQ mode 0

INT_UTX [3] 0 = IRQ mode 1 = FIQ mode 0

INT_UERR [4] 0 = IRQ mode 1 = FIQ mode 0

INT_DMA0 [5] 0 = IRQ mode 1 = FIQ mode 0

INT_DMA1 [6] 0 = IRQ mode 1 = FIQ mode 0

INT_TOF0 [7] 0 = IRQ mode 1 = FIQ mode 0

INT_TMC0 [8] 0 = IRQ mode 1 = FIQ mode 0

INT_TOF1 [9] 0 = IRQ mode 1 = FIQ mode 0

INT_TMC1 [10] 0 = IRQ mode 1 = FIQ mode 0

INT_TOF2 [11] 0 = IRQ mode 1 = FIQ mode 0

INT_TMC2 [12] 0 = IRQ mode 1 = FIQ mode 0

INT_TOF3 [13] 0 = IRQ mode 1 = FIQ mode 0

INT_TMC3 [14] 0 = IRQ mode 1 = FIQ mode 0

INT_TOF4 [15] 0 = IRQ mode 1 = FIQ mode 0

INT_TMC4 [16] 0 = IRQ mode 1 = FIQ mode 0

INT_BT [17] 0 = IRQ mode 1 = FIQ mode 0

INT_SIO0 [18] 0 = IRQ mode 1 = FIQ mode 0

INT_SIO1 [19] 0 = IRQ mode 1 = FIQ mode 0

INT_IIC [20] 0 = IRQ mode 1 = FIQ mode 0

INT_RTCA [21] 0 = IRQ mode 1 = FIQ mode 0

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-4

INTMOD Bit Description Initial State

INT_RTCT [22] 0 = IRQ mode 1 = FIQ mode 0

INT_TF [23] 0 = IRQ mode 1 = FIQ mode 0

EINT2 [24] 0 = IRQ mode 1 = FIQ mode 0

EINT3 [25] 0 = IRQ mode 1 = FIQ mode 0

EINT4/5/6/7 [26] 0 = IRQ mode 1 = FIQ mode 0

INT_ADC [27] 0 = IRQ mode 1 = FIQ mode 0

EINT8 [28] 0 = IRQ mode 1 = FIQ mode 0

EINT9 [29] 0 = IRQ mode 1 = FIQ mode 0

EINT10 [30] 0 = IRQ mode 1 = FIQ mode 0

EINT11 [31] 0 = IRQ mode 1 = FIQ mode 0

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-5

INTERRUPT PENDING REGISTER (INTPND)

In CPU core, there is PSR(Processor Status Register) register, which has several field including the interrupt
relating I-Flag and F-Flag. As mentioned above, the CPU can accept two kinds of interrupt even if there are
many interrupt sources in S3C3410X. That is why all interrupt sources in S3C3410X should be categorized into
two mode, which is IFQ mode and FIQ mode. In this case, if CPU is running the service for certain interrupt, and
if this interrupt has IRQ mode, the other interrupt sources with IRQ mode can not be serviced until the completion
of current service. These interrupt should be pending in IPR(Interrupt Pending Register). In case of FIQ mode,
other FIQ interrupt request can not take CPU while the current FIQ service is running as same as IRQ case.
Therefore, the FIQ interrupt request should be pending in IPR as same as IRQ. If IRQ interrupt service is
running, the FIQ interrupt can take the CPU for service because FIQ has higher priority than IRQ. In other word,
ARM CPU can support two level interrupt architecture. The pending interrupt service can start whenever the I-
Flag or F-Flag should be cleared to "0". The service routine should clear the pending bit, also.

Register Offset
Address

R/W Description Reset
Value

INTPND 0xc004 R/W Interrupt pending register.
Indicates the interrupt request status of each source.
0 = The interrupt has not been requested
(when reading)
0 = Clear pending bit (when writing)
1 = The interrupt source has asserted the interrupt
request (when reading)
1 = No effect, keeping current status, '0' or '1'.
(when writing)

0x0

INTPND Bit Description Initial State
EINT0 [0] 0 = Not requested 1 = Requested 0

EINT1 [1] 0 = Not requested 1 = Requested 0

INT_URX [2] 0 = Not requested 1 = Requested 0

INT_UTX [3] 0 = Not requested 1 = Requested 0

INT_UERR [4] 0 = Not requested 1 = Requested 0

INT_DMA0 [5] 0 = Not requested 1 = Requested 0

INT_DMA1 [6] 0 = Not requested 1 = Requested 0

INT_TOF0 [7] 0 = Not requested 1 = Requested 0

INT_TMC0 [8] 0 = Not requested 1 = Requested 0

INT_TOF1 [9] 0 = Not requested 1 = Requested 0

INT_TMC1 [10] 0 = Not requested 1 = Requested 0

INT_TOF2 [11] 0 = Not requested 1 = Requested 0

INT_TMC2 [12] 0 = Not requested 1 = Requested 0

INT_TOF3 [13] 0 = Not requested 1 = Requested 0

INT_TMC3 [14] 0 = Not requested 1 = Requested 0

INT_TOF4 [15] 0 = Not requested 1 = Requested 0

INT_TMC4 [16] 0 = Not requested 1 = Requested 0

INT_BT [17] 0 = Not requested 1 = Requested 0

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-6

INTPND Bit Description Initial State

INT_SIO0 [18] 0 = Not requested 1 = Requested 0

INT_SIO1 [19] 0 = Not requested 1 = Requested 0

INT_IIC [20] 0 = Not requested 1 = Requested 0

INT_RTCA [21] 0 = Not requested 1 = Requested 0

INT_RTCT [22] 0 = Not requested 1 = Requested 0

INT_TF [23] 0 = Not requested 1 = Requested 0

EINT2 [24] 0 = Not requested 1 = Requested 0

EINT3 [25] 0 = Not requested 1 = Requested 0

EINT4/5/6/7 [26] 0 = Not requested 1 = Requested 0

INT_ADC [27] 0 = Not requested 1 = Requested 0

EINT8 [28] 0 = Not requested 1 = Requested 0

EINT9 [29] 0 = Not requested 1 = Requested 0

EINT10 [30] 0 = Not requested 1 = Requested 0

EINT11 [31] 0 = Not requested 1 = Requested 0

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-7

INTERRUPT MASK REGISTER (INTMSK)

The interrupt mask register has interrupt mask bits for all interrupt source. When an interrupt source mask bit is
"0", the corresponding interrupt can not be serviced by the CPU when the corresponding interrupt request is
generated. If the mask bit is "1", the interrupt service can be done.

Register Offset
Address

R/W Description Reset
Value

INTMSK 0xc008 R/W Interrupt mask register.
Each bit can disable or enable the corresponding
interrupt request.
0 = Interrupt service is masked or disabled.
1 = Interrupt service is available

0x0

INTMSK Bit Description Initial State

EINT0 [0] 0 = Masked 1 = Service available 0

EINT1 [1] 0 = Masked 1 = Service available 0

INT_URX [2] 0 = Masked 1 = Service available 0

INT_UTX [3] 0 = Masked 1 = Service available 0

INT_UERR [4] 0 = Masked 1 = Service available 0

INT_DMA0 [5] 0 = Masked 1 = Service available 0

INT_DMA1 [6] 0 = Masked 1 = Service available 0

INT_TOF0 [7] 0 = Masked 1 = Service available 0

INT_TMC0 [8] 0 = Masked 1 = Service available 0

INT_TOF1 [9] 0 = Masked 1 = Service available 0

INT_TMC1 [10] 0 = Masked 1 = Service available 0

INT_TOF2 [11] 0 = Masked 1 = Service available 0

INT_TMC2 [12] 0 = Masked 1 = Service available 0

INT_TOF3 [13] 0 = Masked 1 = Service available 0

INT_TMC3 [14] 0 = Masked 1 = Service available 0

INT_TOF4 [15] 0 = Masked 1 = Service available 0

INT_TMC4 [16] 0 = Masked 1 = Service available 0

INT_BT [17] 0 = Masked 1 = Service available 0

INT_SIO0 [18] 0 = Masked 1 = Service available 0

INT_SIO1 [19] 0 = Masked 1 = Service available 0

INT_IIC [20] 0 = Masked 1 = Service available 0

INT_RTCA [21] 0 = Masked 1 = Service available 0

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-8

INTMSK Bit Description Initial State

INT_RTCT [22] 0 = Masked 1 = Service available 0

INT_TF [23] 0 = Masked 1 = Service available 0

EINT2 [24] 0 = Masked 1 = Service available 0

EINT3 [25] 0 = Masked 1 = Service available 0

EINT4/5/6/7 [26] 0 = Masked 1 = Service available 0

INT_ADC [27] 0 = Masked 1 = Service available 0

EINT8 [28] 0 = Masked 1 = Service available 0

EINT9 [29] 0 = Masked 1 = Service available 0

EINT10 [30] 0 = Masked 1 = Service available 0

EINT11 [31] 0 = Masked 1 = Service available 0

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-9

INTERRUPT VECTOR BASE ADDRESS

To reduce the interrupt latency, the S3C3410X can support the concept of interrupt vector base address. The
interrupt vector base address means the start address of corresponding service routine. In other word, as soon as
CPU recognize the interrupt request, there will be Branch to fixed hardwired vector. But, because the CPU can
support just two interrupt mode of FIQ and IRQ, we need special technique to assign the specific base vector
address for all interrupt source. To do this, the interrupt controller should give the Branch Instruction (Branch to
the fixed hardware vector address) to CPU as soon as the CPU recognize the interrupt request. Because the
interrupt controller can know the interrupt mode as well as source, the interrupt controller can give the specific
vector address to CPU by H/W. Following table shows the interrupt base vector address for each interrupt source.

Sources Address Sources Address

EINT0 0x80 INT_TMC4 0xc0

EINT1 0x84 INT_BT 0xc4

INT_URX 0x88 INT_SIO0 0xc8

INT_UTX 0x8c INT_SIO1 0xcc

INT_UERR 0x90 INT_IIC 0xd0

INT_DMA0 0x94 INT_RTCA 0xd4

INT_DMA1 0x98 INT_RTCT 0xd8

INT_TOF0 0x9c INT_TF 0xdc

INT_TMC0 0xa0 EINT2 0xe0

INT_TOF1 0xa4 EINT3 0xe4

INT_TMC1 0xa8 EINT4/5/6/7 0xe8

INT_TOF2 0xac INT_ADC 0xec

INT_TMC2 0xb0 EINT8 0xf0

INT_TOF3 0xb4 EINT9 0xf4

INT_TMC3 0xb8 EINT10 0xf8

INT_TOF4 0xbc EINT11 0xfc

INTERRUPT CONTROLLER S3C3410X RISC MICROPROCESSOR

11-10

INTERRUPT PRIORITY REGISTER (INTPRI)

INTPRIn are the interrupt priority register to determine the priority of interrupt sources. There should be 32 grade
priorities for interrupt sources because there are total 32 interrupt request sources in S3C3410X. It means that
the 5-bit register can determine all the priorities of 32 interrupt request sources. So, each INTPRIn is divided into
four part to set the priority of the each interrupt source, that is, INTPRI0 is divided into PRIORITY3, PRIORITY2,
PRIORITY1, and PRIORITY0. Lower number has the higher priority than the higher number, that is, PRIORITY0
has the higher priority than PRIORITY3. So, for determining the priority of interrupt sources, first set the interrupt
number in PRIORITYn only. For example, if PROIRITY0 have 0x11, which is basic timer interrupt number, then
basic timer interrupt have the highest priority in all interrupt sources.

As previously mentioned, there are two kinds of interrupt mode in CPU. One is FIQ and the other is IRQ. The FIQ
has the higher priority than IRQ in CPU. So, if you want to set the priority of FIQ and IRQ, you must set the
priority of FIQ higher than that of IRQ. In summary, the FIQ must have the higher priority than IRQ, interrupt
source in low number priority register has the higher priority than interrupt source in high number priority register.
In addition, all 32 PRIORITYn should have a different interrupt source number.

Register Offset Address R/W Description Reset Value

INTPRI0 0xc00c R/W Interrupt priority register 0 0x03020100

INTPRI1 0xc010 R/W Interrupt priority register 1 0x07060504

INTPRI2 0xc014 R/W Interrupt priority register 2 0x0b0a0908

INTPRI3 0xc018 R/W Interrupt priority register 3 0x0f0e0d0c

INTPRI4 0xc01c R/W Interrupt priority register 4 0x13121110

INTPRI5 0xc020 R/W Interrupt priority register 5 0x17161514

INTPRI6 0xc024 R/W Interrupt priority register 6 0x1b1a1918

INTPRI7 0xc028 R/W Interrupt priority register 7 0x1f1e1d1c

Register [28:24] [20:16] [12:8] [4:0]

INTPRI0 EN PRIORITY3 X PRIORITY2 X PRIORITY1 X PRIORITY0

INTPRI1 X PRIORITY7 X PRIORITY6 X PRIORITY5 X PRIORITY4

INTPRI2 X PRIORITY11 X PRIORITY10 X PRIORITY9 X PRIORITY8

INTPRI3 X PRIORITY15 X PRIORITY14 X PRIORITY13 X PRIORITY12

INTPRI4 X PRIORITY19 X PRIORITY18 X PRIORITY17 X PRIORITY16

INTPRI5 X PRIORITY23 X PRIORITY22 X PRIORITY21 X PRIORITY20

INTPRI6 X PRIORITY27 X PRIORITY26 X PRIORITY25 X PRIORITY24

INTPRI7 X PRIORITY31 X PRIORITY30 X PRIORITY29 X PRIORITY28

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-11

INTPRI0 Bit Description Initial State

EN [31:29] 000 = Disable interrupt priority other = Enable interrupt priority 000

PRIORITY N 5-bit The priority number for interrupt request source N.

X 3-bit Do not care field.

NOTES:
1. To use the programmable priority, set EN to 000b, then the priority should be determined by SW.
2. The PRIORITYn determines the priority of the corresponding interrupt source.
3. The highest priority is PRIORITY0, and the lowest priority is PRIORITY31.

INTERRUPT CONTROLLER S3C3410X RISC MICROPROCESSOR

11-12

NOTES

S3C3410X RISC MICROPROCESSOR A/D CONVERTER

12-1

12 A/D CONVERTER

OVERVIEW

The 10-bit CMOS A/D converter in S3C3410X has a 8-channel analog input multiplexer, auto offset calibration
comparator, high resolution R-string DAC, clock generator, successive approximation register(SAR), ADC control
register(ADCCON), and tri-state output register (ADCDAT). This well trimmed ADC architecture can give high
accurate conversion result. In addition to accurate conversion result, users can have the power down mode of
ADC to reduce the power consumption when users do not use the ADC.

FEATURE

• Resolution: 10-bit

• Differential Linearity Error: ± 1 LSB

• Integral Linearity Error: ± 1 LSB

• Maximum Conversion Rate: 500KSPS

• Low Power Consumption: 3.3 mW (Typical) @ normal operation mode
 330 nW (Typical) @ standby mode

• No missing code

A/D CONVERTER S3C3410X RISC MICROPROCESSOR

12-2

A/D CONVERTER OPERATION

BLOCK DIAGRAM

8
AIN[7:0]

COMP

+

- SAR/ADC

CLKGEN
Input
Select

/2, /4, /8, /16MCLK

OUTREG

ADCDAT

DAC

INT ADCINT

Data Bus
10

C
LK

1

C
LK

2

DACLK

Vref (Internal Reference Voltage)

Figure 12-1. A/D Converter Block Diagram

FUNCTION DESCRIPTION

SAR (Successive Approximation Register) A/D Converter Operation

A SAR type A/D converter basically consists of the comparator, D/A converter, and SAR logic. The conversion
process of basic SAR-type ADC is as follow. After sampling analog input, the MSB is switched on to generate the
D/A output of half reference voltage and the analog input signal is compared to the output signal of the D/A
converter. When the input signal is larger than the output signal of the D/A converter, then the MSB remains and
next bit is switched on to generate the D/A output contributing quarter reference voltage. It means that there will
be comparison between analog input and the 0.75 reference voltage. When the input signal is smaller than the
output signal of the D/A converter, then the MSB is off and next bit is switched on to generate the D/A output
contributing quarter reference voltage. It means that there will be comparison between analog input and the 0.25
reference voltage. and a comparison will be performed. By having this comparison algorithm, we need 10 times
comparison to determine the 10bit result. Usually, SAR algorithm need n-step to determine the n-bit, which has
linear complexity.

S3C3410X RISC MICROPROCESSOR A/D CONVERTER

12-3

Comparator and DAC (Digital to Analog Converter)

The CMOS comparator can produce the digital output as the result of comparison between analog input and
reference voltage by the assumed digital code. This comparator need internal non-overlapping clock to reduce
the error effect during the conversion process. Especially, the D/A converter consists of 128 resistor strings and
switches array to cover 7-bit resolution. So, the comparator should perform the comparison with 3-bit resolution.
The D/A converter can generate the digitized analog output (DAOUT) from data of SAR logic block as follows:

DAOUT = (AVREF – AVSS) / 128 × D[9:0]

where AVREF and AVSS are analog reference voltage and analog ground which should be applied to the
comparator and the D/A converter block.

Clock Divider and Clock Generator (CLKGEN)

The clock divider block of the A/D converter can generate the necessary clock for ADC. The clock rate for ADC
can eventually indicate the conversion speed of ADC. To get the reliable accuracy of ADC, users should
configure the proper clock rate of ADC. The ADC clock can be achieved by slowing down the MCLK. The CKSEL
field in ADCCON register can select the necessary clock for ADC. These options are MCLK/2, MCLK/4, MCLK/8,
or MCLK/16. Internally, ADC should generate the necessary clock based on master clock. For example, we need
non-overlapping clock for the operation of ADC.

NOTE: The maximum frequency into CLKGEN is 20MHz. In other word, the MCLK/X should be less than 20MHz.

A/D Conversion Time

The number of cycle of CLKGEN (Input clock of clock generator for ADC) which needs for complete conversion
of 10-bit resolution, is 45.

So, the minimum A/D conversion time at MCLK=40MHz is calculated as follows if users take the division factor
of 2:

40MHz / 2 (divide 2 frequency) / 45 = 444.4KHz = 2.25us

If MCLK is 25MHz, the minimum A/D conversion time is calculated as follows:

25MHz / 2 / 45 = 277.8KHz = 3.6us

NOTE: In the above calculated A/D conversion time, the CPU access time is omitted. If the CPU access time is considered,
the maximum conversion rate will be about 500KSPS.

Standby Mode

When users need the reduction of power for ADC, users can set the STBY "1". In this case, the A/D converter
should be kept in standby mode without an A/D conversion operation and it can eliminate the power
consumption, also

NOTE: If STBY is applied during A/D conversion, the FLAG bit goes HIGH immediately.

A/D CONVERTER S3C3410X RISC MICROPROCESSOR

12-4

A/D CONVERTER SPECIAL REGISTERS

A/D CONVERTER CONTROL REGISTER (ADCCON)

Register Offset
Address

R/W Description Reset
Value

ADCCON 0x8002 R/W A/D Converter control register 0x140

ADCCON Bit Description Initial State

ADEN [0] A/D Enable: This bit can determine enable/disable for ADC.
0 = No operation
1 = Start A/D conversion. This bit will be cleared automatically
after conversion start.

0

ASEL [3:1] Analog Input Select: This field can determine the channel of
analog input.
000 = AIN0 001 = AIN1 010 = AIN2 011 = AIN3
100 = AIN4 101 = AIN5 110 = AIN6 111 = AIN7

000

CLKSEL [5:4] Clock Source: This field can determine the input clock of clock
generator (CLKGEN)
00 = MCLK / 16 01 = MCLK / 8
10 = MCLK / 4 11 = MCLK / 2

00

STBY [6] Standby Mode: System power down mode select.
0 = Normal operation 1 = Power down mode

1

MODE [7] Conversion Mode: 10-bit/8-bit mode.
0 = 10-bit operation 1 = 8-bit operation

0

FLAG [8] A/D converter state flag (Read Only)
0 = A/D conversion in process
1 = End of A/D conversion

1

S3C3410X RISC MICROPROCESSOR A/D CONVERTER

12-5

A/D CONVERTER DATA REGISTER (ADCDAT)

When A/D conversion is finished, the conversion result can be read from the ADCDAT register. The ADCDAT
register should be read after the conversion is finished.

Register Offset
Address

R/W Description Reset
Value

ADCDAT 0x8006 R/W A/D Converter data register –

ADCDAT Bit Description Initial State

DATA [9:0] A/D converter output –

NOTE: If MODE bit in the ADCCON register set to "1", ADCDAT[1:0] isn't a valid value. Instead, the maximum conversion
rate will be 650KSPS.

A/D CONVERTER S3C3410X RISC MICROPROCESSOR

12-6

NOTES

S3C3410X RISC MICROPROCESSOR BASIC TIMER & WATCHDOG TIMER

13-1

13 BASIC TIMER & WATCHDOG TIMER

OVERVIEW

The S3C3410X has internal Basic Timer/Watchdog Timer. This kind of timer can be used to resume the
controller operation when it is disturbed due to noise, system error, or other kinds of malfunction. To have a
configuration on Watchdog Timer, the overflow signal from 8-bit Basic Timer should be fed to the clock input of
3-bit Watchdog Timer as shown in below figure. User can enable or disable the Watchdog Timer by software, i.e.,
by controlling the configuration in BTCON register. If users do not want to use the configuration of Watchdog
Timer, the 8-bit Basic Timer can only be used as a normal interval timer to request the interrupt service. Also, it
works to signal the end of the required oscillation interval after a reset or Stop mode release. For example, the
Basic Timer can give the overflow signal to necessary logic blocks after a reset or release from Stop mode. In
this case, the overflow signal from Basic Timer can guarantee the necessary time delay for stable clock from
external oscillator circuit.

Clock DIV

Fin / 2^9

Fin / 2^11

Fin / 2^12

Fin / 2^13

Fin
8-bit

Counter
3-bit WDT RESET

BTINT

WDT enable control

Clock Select

Counter Clear

Counter Clear

Bit 4
CPU Start

Figure 13-1. Basic Timer Block Diagram

BASIC TIMER & WATCHDOG TIMER S3C3410X RISC MICROPROCESSOR

13-2

FUNCTION DESCRIPTION

Interval Timer Function

The primary function of Basic Timer is to measure the elapsed time between events. The standard time interval
is equal to 256 basic timer clock pulses, which is an overflow signal from 8-bit Basic Timer.

The content of 8-bit counter register, BTCNT, increases it content every when a clock signal is detected which
corresponds to the frequency selected by BTCON. The BTCNT continues its counting until an overflow occurs,
i.e., the content reaches to 255. An overflow can cause the BT interrupt pending flag to be set, which signals that
the designated time interval has elapsed. In this case, when an interrupt request is generated, BTCNT is cleared
to all zero, and the counting continues from 00h, again.

Oscillation Stabilization Using Interval Timer Function

Users can use the Basic Timer to have programmable delay time, which is necessary for stabilizing the clock
signal from oscillator circuit after reset or Stop mode release.

When the S3C3410X is in Stop mode, the reset or external interrupt request can wake up the S3C3410X. Please
understand that the oscillator circuit is in disable state when the S3C3410X is in Stop mode. In case of wake-up
by reset, the oscillator should start first. Because the default clock division ratio is Fin / 2^13, the Fin / 2^13 clock
will be fed to the 8-bit Basic Timer. When an overflow occurs from Bit 4 of BTCNT register(Not using 8-bit, but 4-
bit of Basic Timer), this kind of overflow signal can release the clock blocking to CPU. In other word, the normal
clock can be bed to S3C3410X when an overflow of Bit 4 in Basic Timer. In case of wake-up by external interrupt
request, the only difference from reset, is clock division ratio. While we should use the default value of clock
division ratio for the case of wake-up by reset, we use the pre-defined value of clock division ration before
entering Stop mode for the case of wake-up by external interrupt request. In any case, the CPU can resume its
operation when normal clock can be fed to the blocks in S3C3410X.

In summary, please take following sequence for releasing S3C3410X from Stop mode:

1. When S3C3410X is in Stop mode, the escape from Stop mode can be made by a power-on reset or an
external interrupt. At same time, the oscillator can start its oscillation.

2. In case of wake-up by power-on reset, the Basic Timer will increase its content(BTCNT) at the rate of Fin /
2^13, which is the default rate of clock division ration. In case of wake-up by external interrupt request, the
Basic Timer will increase its content(BTCNT) at the rate of preset value, which is written before entering into
Stop mode.

3. The normal clock from oscillator will be delayed to be fed to all logic blocks inside S3C3410X until the 4th bit
of Basic Timer is generated. It means that user can use the Basic Timer to guarantee the stable clock from
oscillator, i.e., waiting up to stable oscillation.

4. When the normal clock can be fed to S3C3410X, the S3C3410X can resume the operation.

S3C3410X RISC MICROPROCESSOR BASIC TIMER & WATCHDOG TIMER

13-3

Watchdog Timer Operation

The Basic Timer can also be used as a "Watchdog" Timer to recover the S3C3410X from the unexpected
program sequence, that is, system or program operation error due to external factor. For example, the external
noise can cause this kind of situation, which means that the CPU is running the unexpected code sequence, i.e.,
malfunction of CPU. To recover the CPU from the unexpected sequence, the Watchdog Timer should reset the
CPU in case of malfunction. But, during normal sequence, the instruction which clear the Watchdog before the
overflow of Watchdog Timer (Within a given period) should be executed at the proper points in a program. If this
instruction can be executed in certain circumstance, it means the overflow of Watchdog Timer and it can
generate the internal reset signal generation to restart the CPU from the beginning. In summary, an operation of
Watchdog Timer is as follows:

• Each time BTCNT overflows, an overflow signal should be sent to the Watchdog Timer Counter, WDTCNT.

• If WDTCNT overflows, system reset should be generated.

NOTE

A reset signal can clear the BTCON as 0x0000. This value can enable the Watchdog Timer because it is
not 0xA5(Please understand the Watchdog Timer can be disable when its content(WDTE field in
BTCON[15:8] register) is 0xA5). For normal program sequence, the application program should prevent
the overflow. To do this, the WDTCNT value should be cleared(by writing a "1" to WDTC bit of the Basic
Timer Control Register(BTCON[0])) before the overflow occurs.

BASIC TIMER & WATCHDOG TIMER S3C3410X RISC MICROPROCESSOR

13-4

BASIC TIMER DURATION

The Basic Timer Counter, BTCNT, can be used to specify the time-out duration, and is a free-running 8-bit
counter. Please keep below table as reference for duration of timer. This is the case when the external clock is
40Mhz.

Clock Source Resolution Interval Time

Fin / 29 (Fin = 40MHz) 12.8 us 2^9 × 28 / Fin = 3.277 ms

Fin / 211 (Fin = 40MHz) 51.2 us 211 × 28 / Fin = 13.107 ms

Fin / 212 (Fin = 40MHz) 102.4 us 212 × 28 / Fin = 26.214 ms

Fin / 213 (Fin = 40MHz) 204.8 us 213 × 28 / Fin = 52.429 ms

WATCHDOG TIMER DURATION

The Watchdog Timer Counter, WTCNT, can be used to specify the time-out duration and is a free-running 3-bit
counter. To enable Watchdog Timer, user should write the data in BTCON[15:8] register except 0xA5. In case of
0xA5, it will disable the Watchdog Timer. After writing certain value in BTCON[15:8] except 0xA5, there will be a
system reset if the overflow occurs.

Clock Source Basic Timer Interval Watchdog Timer Interval Time

Fin / 29 (Fin = 40MHz) 3.277 ms 29 × 28 × 23 / Fin = 26.214 ms

Fin / 211 (Fin = 40MHz) 13.107 ms 211 × 28 × 23 / Fin = 104.858 ms

Fin / 212 (Fin = 40MHz) 26.214 ms 212 × 28 × 23 / Fin = 209.715 ms

Fin / 213 (Fin = 40MHz) 52.429 ms 213 × 28 × 23 / Fin = 419.430 ms

S3C3410X RISC MICROPROCESSOR BASIC TIMER & WATCHDOG TIMER

13-5

BASIC TIMER & WATCHDOG TIMER SPECIAL REGISTERS

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register contains Watchdog counter enable bits, clock input bits, and counter clear bit.

Register Offset
Address

R/W Description Reset
Value

BTCON 0xa002 R/W Basic Timer Control register 0x0

BTCON Bit Description Initial State

WDTC [0] Watchdog Timer Clear: This bit can clear the Watchdog Timer
Counter. When this bit is set, the Watchdog Timer Counter will
be cleared to all zero.

0

BTC [1] Basic Timer Clear: This bit can clear the Basic Timer Counter.
When this bit set, the Basic Timer Counter will be cleared to all
zero.

0

CS [3:2] Clock Source Select: This field can select a clock source.
00 = Fin / 213 01 = Fin / 212

10 = Fin / 211 11 = Fin / 29

00

Reserved [7:4] Reserved 0000

WDTE [15:8] Watchdog Timer Enable: This field can control to enable or
disable a Watchdog Timer Counter. When this field is 0xA5,
Watchdog Timer Counter will be stopped. The other value
except 0xA5 can enable a Watchdog Timer Counter, and make
a system reset when the overflow signal occurs.

00000000

BASIC TIMER COUNT REGISTER (BTCNT)

Register Offset
Address

R/W Description Reset
Value

BTCNT 0xa007 R Basic Timer count register 0x0

BTCNT Bit Description Initial State

CV [7:0] Count value 0x00

BASIC TIMER & WATCHDOG TIMER S3C3410X RISC MICROPROCESSOR

13-6

NOTES

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

14-1

14 IIC-BUS INTERFACE

OVERVIEW

The S3C3410X RISC microprocessor can support a multi-master IIC-bus serial interface. A dedicated serial data
line(SDA) and a serial clock line(SCL) can carry information between bus masters and peripheral devices which
are connected to the IIC-bus. The SDA and SCL lines are bi-directional.

In multi-master IIC-bus mode, multiple S3C3410X RISC microprocessor can receive or transmit the serial data to
or from slave devices. The master S3C3410X which can initiate a data transfer over the IIC-bus, is responsible
for terminating the transfer. Standard bus arbitration procedure is used in this IIC-bus in S3C3410X.

When the IIC-bus is free, the SDA and SCL lines should be both at High level. A High-to-Low transition of SDA
can initiate a Start condition. A Low-to-High transition of SDA can initiate a Stop condition while SCL remains
steady at High Level.

The Start and Stop conditions can always be generated by the master devices. A 7-bit address value in the first
data byte which is put onto the bus after the Start condition is initiated, can determine the slave device which the
bus master device has selected. The 8th bit determines the direction of the transfer (read or write).

Every data byte that is put onto the SDA line should be total eight bits. The number of bytes which can be sent or
received during the bus transfer operation is unlimited. Data is always sent from most-significant bit (MSB) first
and every byte should be immediately followed by an acknowledge (ACK) bit.

Serial Clock
Prescaler

SCL
Control

IIC-BUS
Control Logic

IICCON IICSTAT

IICDATIICADD
DATA

Control

MCLK

IICINT

SCL

SDA

Figure 14-1. IIC-Bus Block Diagram

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

14-2

IIC_BUS OPERATION

THE IIC-BUS INTERFACE

 The S3C3410X IIC-bus interface has four operation modes:

— Master transmitter mode

— Master receive mode

— Slave transmitter mode

— Slave receive mode

Functional relationships among these operating modes are described below.

START AND STOP CONDITIONS

When the IIC-bus interface is in inactive state, it is usually in slave mode. In other word, the state of interface
should be in slave mode before detecting a Start condition on the SDA line. (A Start condition can be initiated by
having a High-to-Low transition of the SDA line while the clock signal of SCL is High) When the state of interface
is changed into the master mode, it can initiate a data transfer on the SDA line as well as generating the SCL
signal.

A Start condition can initiate a one-byte serial data transfer over the SDA line and stop condition can indicate the
termination of data transfer. A Stop condition is a Low-to-High transition of the SDA line while SCL is High. Start
and Stop conditions are always generated by the master. The IIC-bus is busy when a start condition is generated.
A few clocks after a stop condition, the IIC-bus will be free, again.

When a master initiates a Start condition, it should send slaver address to give a notice to the slaver device. The
one byte of address field consist of a 7-bit address and a 1-bit transfer direction indicator (that is, write or read).
If bit 8 is 0, it indicate a write operation(transmit operation). If bit 8 is 1, it indicate a request for data read(receive
operation).

The master will finish the transfer operation by transmitting a Stop condition. If the master want to continue the
data transmission the bus, it should generate another Start condition as well as slave address. In this way, the
read-write operation can be performed in various format.

SCL

SDA SDA

SCL

Start
Condition

Stop
Condition

Figure 14-2. Start and Stop Condition

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

14-3

DATA TRANSFER FORMAT

Every byte put on the SDA line should have eight bits in length. The number of bytes which can be transmitted
per transfer is unlimited. The first byte following a start condition should have the address field. The address field
can be transmitted by the master when the IIC-bus is operating in master mode. Each byte should be followed by
an acknowledge (ACK) bit. The MSB bit of Serial data and addresses are always sent first.

NOTES:
1. S: Start, rS: Repeat Start, P: Stop, A: Acknowledge
2. : From Master to Slave, : from Slave to Master

Write Mode Format with 7-bit Addresses

"0"
(Write) Data Transferred

(Data + Acknowledge)

S Slave Address 7bits R/W A PDATA A

Read Mode Format with 7-bit Addresses

"1"
(Read) Data Transferred

(Data + Acknowledge)

S Slave Address 7 bits R/W A PDATA A

Write Mode Format with 10-bit Addresses

"0"
(Write) Data Transferred

(Data + Acknowledge)

PDATA AS
Slave Address

1st 7 bits
R/W A

Slave Address
2nd Byte

A

11110XX

Read Mode Format with 10-bit Addresses

"0"
(Write)

S
Slave Address

1st 7 bits

11110XX

R/W A
Slave Address

2nd Byte
A rS

Slave Address
1st 7 Bits

A

Data Transferred
(Data + Acknowledge)

PDATA AR/W

"1"
(Read)

Figure 14-3. IIC-Bus Interface Data Format

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

14-4

SDA

Acknowledgement
Signal from Receiver

SCL

S

1 2 7 8 9 1 2 9

Acknowledgement
Signal from Receiver

MSB

ACK

Byte Complete, Interrupt
within Receiver

Clock Line Held Low While
Interrupts are Serviced

P

Figure 14-4. Data Transfer on the IIC-Bus

ACK SIGNAL TRANSMISSION

To finish a one-byte transfer operation completely, the receiver should send an ACK bit to the transmitter. The
ACK pulse should occur at the ninth clock of the SCL line. Eight clocks are required for the one-byte data
transfer. The clock pulse required for the transmission of the ACK bit, should be generated by the master.

The transmitter should release the SDA line by making the SDA line High when the ACK clock pulse is received.
The receiver should also drive the SDA line Low during the ACK clock pulse so that the SDA is Low during the
High period of the ninth SCL pulse.

The ACK bit transmit function can be enable or disable by software (IICSTAT). However, the ACK pulse on the
ninth clock of SCL is required to complete a one-byte data transfer operation.

Data Output by
Trasmitter

Data Output by
Receiver

SCL from
Master

Start
Condition

Clock Pulse for Acknowledgment

Clock to Output

987
S

1 2

Figure 14-5. Acknowledge on the IIC-Bus

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

14-5

READ-WRITE OPERATION

In case of transmitter mode, after a data was transferred, the IIC-bus interface will wait until IICDS(IIC-bus Data
Shift Register) is written by a new date. Until the new data is written, the SCL line will be held low. After the new
data is written to IICDS register, the SCL line will be released. The S3C3410X should wait the interrupt to know
the completion of transmission of current data. After getting the interrupt request, the CPU should write a new
data into IICDS, again.

In case of receive mode, after a data is received, the IIC-bus interface will wait until IICDS register is read. Until
the new data is read out, the SCL line will be held low. After the new data is read out from IICDS register, the
SCL line will be released. The S3C3410X should wait the interrupt to know the completion of reception of new
data. After getting the interrupt request, the CPU should read data from IICDS.

BUS ARBITRATION PROCEDURES

Arbitration takes place on the SDA line to prevent the contention on the bus between two masters. If a master
with a SDA High level detects another master with a SDA active Low level, it will not indicate a data transfer
because the current level on the bus does not correspond to its own. The arbitration procedure will be extended
until the SDA line will be High.

But, in case of simultaneous lowering of the SDA line from masters, each master should evaluate whether or not
the mastership is allocated to itself. For the purpose of evaluation, each master should detect the address bits.
While each master generate the slaver address, it should also detect the address bit on the SDA line because the
lowering of SDA line is stronger than maintaining High on the line. For example, one master generate Low as first
address bit, while the other master is maintaining High. In this case, both master will be detect Low on the bus
because Low is stronger than High even if first master is trying to maintain High on the line. In this case, Low-
generating master as first address bit will get the mastership and High-generating master as first address bit
should withdraw the mastership. If both master generate Low as first address bit, there should be arbitration for
second address bit, again. This arbitration will be continued up to the end of last address bit.

ABORT CONDITION

If a slave receiver can not acknowledge the confirmation of the slave address, it should hold the level of the SDA
line High. In this case, the master should generate a Stop condition to abort the transfer.

If a master receiver is involved in the aborted transfer, it should signal the end of the slave transmit operation. It
does this by canceling the generation of an ACK in the master Rx mode. The slave transmitter should then
release the SDA to allow a master to generate a Stop condition.

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

14-6

IIC-BUS INTERFACE SPECIAL REGISTERS

MULTI-MASTER IIC-BUS CONTROL REGISTER (IICCON)

Register Offset
Address

R/W Description Reset
Value

IICCON 0xe000 R/W IIC-bus control register 0x0

IICCON Bit Description Initial State

Reserved [0] Reserved 0

BSSF [1] Busy Signal Status Flag: When CPU has read this bit, the "0"
status indicates that IIC-Bus is idle and the "1" status means IIC-
Bus is busy.
In case of writing to this bit, the "0" write operation asserts the
Stop signal on IIC-Bus interface and the "1" asserts the Start
signal on IIC-Bus interface.

0

MS [3:2] Mode Selection: This field determines which IIC mode is
currently able to read/write data from/to IICDAT
00 = Slave receive mode 01 = Slave transmit mode
10 = Master receive mode 11 = Master transmit mode

00

ACKE(1) [4] Acknowledge Enable: This bit determines whether IIC-Bus
acknowledge is enabled or disabled.
0 = Disable ACK generation 1 = Enable ACK generation

0

BE [5] IIC-Bus Enable: This bit determines whether IIC-Bus data
output is enabled or disabled.
0 = Disable Rx/Tx 1 = Enable Rx/Tx

0

Reserved [6] This bit should be to set "0" 0

Reset [7] If "1" is written to this bit, the IIC bus controller is reset to its
initial state

0

NOTE: Interfacing EEPROM, the ACK generation may be disabled in order to generate the STOP condition in Rx mode.

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

14-7

MULTI-MASTER IIC-BUS STATUS REGISTER (IICSTAT)

Register Offset
Address

R/W Description Reset
Value

IICSTAT 0xe001 R/W IIC-bus status register 0x0

IICSTAT Bit Description Initial State

LRBSF [0] Last-received Bit Status Flag: This bit is automatically set to
"1" whenever an ACK signal is not received during a last bit
receive operation. When the last receive bit is zero, this is as
same meaning as the detection of an ACK signal. In this case,
Last-Received Bit Status Flag will be cleared.

0

GCSF [1] General Call Status Flag: This bit is automatically set to "1"
whenever "00000000b", General Call Value is issued as the
received slave address. When the Start/Stop condition is
detected, this bit of General Call Status Flag will be cleared.

0

MACSF [2] Master Address Call Status Flag: This bit is automatically set
to "1" whenever the received slave address matches the address
value in IICADD register. This bit will be cleared after Start/Stop
condition is detected.

0

ASF [3] Arbitration Status Flag: This bit is automatically set to "1" to
indicate that a bus arbitration has been failed during IIC-Bus
interface. This bit is also set to "0" to indicate the successful
arbitration for IIC-Bus interface

0

INTFLAG [4] Interrupt Pending Flag: This bit is IIC-bus Tx/Rx interrupt
pending flag. It is impossible to write "1" into this bit. If this bit is
read as "1", IICSCL is tied to "L" and IIC is stopped. To resume
the operation, clear this bit by writing "0".

0 = 1) No interrupt pending (when read)
 2) Clear pending condition (when write)

1 = 1) Interrupt is pending (when read)
 2) N/A (when write)

0

 NOTE: A IIC-bus interrupt occurs 1) when a 1-byte transmit or receive operation is terminated, 2) when a general call or a
slave address match occurs, or 3) if bus arbitration fails. To measure the setup time of IICSDA before rising edge of
IICSCL, IICDS has to be written before clearing IIC interrupt pending flag bit by the setup time in Tx mode.

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

14-8

MULTI-MASTER IIC-BUS ADDRESS REGISTER (IICADD)

Register Address R/W Description Reset Value

IICADD 0xe003 R/W IIC-Bus transmit/receive address register 0x0

IICADD Bit Description Initial State

Reserved [0] Reserved 0

SA [7:1] Slave Address: 7-bit slave address, latched from the IIC-bus:
When serial output enable=0 in the IICCON register,
IICADD is write-enabled. You can read the IICADD value at any
time, regardless of the current serial output enable bit (IICCON)
setting.

0000000b

MULTI-MASTER IIC-BUS TRANSMIT/RECEIVE DATA SHIFT REGISTER (IICDS)

Register Address R/W Description Reset Value

IICDS 0xe002 R/W IIC-Bus transmit/receive data shift register 0x0

IICDS Bit Description Initial State

DS [7:0] Data Shift: 8-bit data shift register for IIC-bus Tx/Rx operation:
When serial output enable = 1 in the IICCON, IICDS is write-
enabled. You can read the IICDS value at any time, regardless
of the current serial output enable bit (IICCON) setting

0x0

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

14-9

MULTI-MASTER IIC-BUS PRESCALER REGISTER (IICPS)

Register Address R/W Description Reset Value

IICPS 0xe004 R/W IIC-Bus Prescaler register 0xff

IICPS Bit Size Description Initial State

PS [7:0] Prescaler Value: This prescaler value is used to generate clock
of the IIC-Bus clock.
The system clock is divided by (16 × (prescaler value +1)) to
make clock of the IIC block. If the prescaler value is zero, IIC
operation may work incorrectly.

0xff

MULTI-MASTER IIC-BUS PRESCALER COUNTER REGISTER (IICPCNT)

Register Address R/W Description Reset Value

IICPCNT 0xe005 R/W IIC-Bus Prescaler Counter register 0x0

IICPCNT Bit Description Initial State

PCNT [7:0] Prescaler Counter Value: This 8-bit value is the value of the
prescaler counter. It is read(in test mode only) to check the
counter's current value

0x0

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

14-10

NOTES

S3C3410X RISC MICROPROCESSOR POWER MANAGEMENT

15-1

15 POWER MANAGEMENT

OVERVIEW

The Power Management Block in S3C3410X can manage the optimal power consumption for the given task by
selecting the optimal operation mode. The Power Management scheme in S3C3410X consists of five categories,
which are Normal, Slow, Idle, DMA Idle, and Stop mode. The key scheme of this power down mode is to
distribute the clock or slow-down clock to necessary block for the given task. By selecting optimal clocking
strategy, we can reduce the power consumption by getting rid of unnecessary power consumption for the given
task.

S3C3410X has five power-down modes. The following section describes each power-down mode. The transition
between the modes is not allowed freely. For available transitions among these modes, refer to Figure 15-1.

DMA IDLE

IDLE

STOP

NORMAL
(CS_BIT=011b)

SLOW
(CS_BIT=Others)

EINT, Alarm interrupt

Interrupts, EINT

IDLE_BIT = 1

DMA_IDLE_BIT = 1

Interrupts, EINT

STOP_BIT = 1

Figure 15-1. Power Management State Machine

POWER MANAGEMENT S3C3410X RISC MICROPROCESSOR

15-2

POWER MANAGEMENT OPERATION

NORMAL MODE

In Normal mode, all peripherals and the basic blocks: such as CPU core, bus controller, memory controller,
interrupt controller, and clock controller, should work normally. In Normal mode, the power consumption will be
maximized.

SLOW MODE

The Slow mode can reduce power consumption by slowing down operation frequency. The operating frequency is
divide by n of MCLK. The divide ratio is determined by CS bits in the SYSCON register.

IDLE MODE

IDLE mode is invoked by the setting SYSCON[1] to "1". In IDLE mode, the operation of CPU is halted by
disconnecting the clock to CPU while some peripherals remain active.

These are two ways to escape from IDLE mode:

1. Execute a reset. All system and peripheral control registers are reset to their default value and the contents
of all data registers are retained. The reset automatically selects a slow clock (1/16) because SYSCON[5:3]
are cleared to "000b". if interrupt masked, a reset is the only way to escape from IDLE mode.

2. Any active interrupt happens, causing IDLE mode to be released. The interrupt routine will be serviced by
active CPU. After the interrupt is serviced, the CPU will return to the next instruction after instruction used for
IDLE mode entrance.

DMA IDLE MODE

The DMA Idle mode can be invoked by the setting SYSCON[2] to "1". In DMA Idle mode, CPU operation will be
stopped while some peripherals remain active. This is same as IDLE mode. The difference between IDLE and
DMA IDLE mode is that any external DMA request can wake up CPU and make CPU sleep by the corresponding
DMA Acknowledge. Consequently, user can make CPU alive only during the DMA operation. This mode is
effective when there are infrequent external DMA request based on Single DMA Request/Acknowledge. This
mode is not effective for internal DMA request, Demand, or Block transfer mode. The main reason for this mode
is that we can save the power consumption during DMA operation by sleeping CPU when user want DMA
operation without CPU operation and when there are infrequent external DMA request.

These are three ways to release DMA Idle mode:

1. Execute a reset. It is the same that Idle mode.

2. Any active interrupt happens, causing DMA Idle mode to be released. It is as same as IDLE mode.

3. The external DMA request makes DMA Idle mode to be released and Acknowledge makes CPU in IDLE
mode.

S3C3410X RISC MICROPROCESSOR POWER MANAGEMENT

15-3

STOP MODE

Entering STOP Mode

STOP mode is invoked by the setting SYSCON[0] to "1". In STOP mode, the operation of the CPU and all
peripherals should be halted. That is, the on-chip main oscillator stops and the supply current is reduced to less
than 1uA. All system functions stop when the clock "freezes", but data stored in the internal register file is
retained. STOP mode can be released by two ways: by a reset or by an external interrupt or alarm interrupt.

NOTE

Do not use STOP mode if you are using an external clock source because Xin input must be restricted
internal to VSS to reduce current leakage. Also, do not use STOP mode if program control execute in
DRAM memory because of DRAM leakage current. Therefore, please confirm status before the STOP
mode: STOP command in located Non-DRAM memory.

Wake-Up from STOP Mode

The S3C3410X can be escaped from STOP mode by external interrupt or by a reset.

Using RESETRESET to Release STOP Mode: The STOP mode should be released when the RESET signal is
released. All system and peripheral control registers are reset to have their default hardware values and the
contents of data registers should be retained. A reset operation automatically selects a slow clock(MCLK/16)
because SYSCON[5:3] are cleared to "000b". After the programmed oscillation stabilization interval has elapsed,
the CPU starts the system initialization routine by fetching the program instruction stored in location 0x0.

Using an External Interrupt to Release STOP Mode: External interrupts and alarm interrupt can be used to
release STOP mode. Which interrupt you can use to release STOP mode in a given situation depends on the
current microcontroller's operating mode. The external interrupts of EINT0 - EINT11 and alarm interrupt in the
S3C3410X can be used to release STOP mode :

Please note the following conditions for STOP mode release:

• If user want to release STOP mode by using an external interrupt or alarm interrupt, the current values in
system and peripheral control registers should be unchanged. User can also program the duration of the
oscillation stabilization interval. To do this, user should make the appropriate control and clock setting before
entering STOP mode.

• When the STOP mode is released by external interrupt or alarm interrupt, the SYSCON[5:3] setting remains
unchanged and the selected clock value is used.

• The external interrupt should be serviced when the STOP mode release interrupt occurs. After interrupt
service routine, the program sequence should be return to the instruction after the instruction for STOP mode
entrance.

POWER MANAGEMENT S3C3410X RISC MICROPROCESSOR

15-4

VDD

RESET

Internal
RESET

Oscillator

BTCNT
Clock

BTCNT
Value

BTCNT = 0x10

Oscillator stabilization time

BTCNT = 0x0

Reset Release
Voltage

0.85VDD

Oscillation Stabilization Normal Operation Mode

tWAIT = 8192 × 16 / fosc

Basic timer increament and
CPU operations are IDLE mode

Figure 15-2. Oscillation stabilization Time on RESETRESET

NOTE: Duration of the stabilization wait time, tWAIT, when it is released by a Power-on reset is (213 × 16 / fosc).

S3C3410X RISC MICROPROCESSOR POWER MANAGEMENT

15-5

External
Interrupt

RESET

Oscillator

BTCNT
Clock

BTCNT
Value

BTCNT = 0x10

BTCNT = 0x0
tWAIT

Normal Mode STOP Mode Oscillation Stabilization Time

CS_BIT

00b

01b

10b

11b

tWAIT tWAIT (When fosc is 40MHz)

213 × 16 / fosc 3.28 ms

212 × 16 / fosc 1.64 ms

211 × 16 / fosc 0.82 ms

29 × 16 / fosc 0.205 ms

Figure 15-3. Oscillation Stabilization Time on STOP Mode Release

NOTE: Duration of the stabilization wait time, tWAIT, it is released by an interrupt is determined by the setting in basic
timer control register, BTCNT

POWER MANAGEMENT S3C3410X RISC MICROPROCESSOR

15-6

POWER MANAGEMENT SPECIAL FUNCTION REGISTERS

SYSTEM CONTROL REGISTER (SYSCON)

The system control register is used to control the system operation of the chip.

Register Offset
Address

R/W Description Reset
Value

SYSCON 0xd003 R/W System control register 0x0

SYSCON Bit Description Initial State

STOP [0] STOP Control: This bit value determines whether STOP mode
is enabled or disabled.
0 = Normal operation 1 = Entering STOP mode

0

IDLE [1] IDLE Control: This bit value determines whether IDLE mode is
enabled or disabled.
0 = Normal operation 1 = Entering IDLE mode

0

DMA_IDLE [2] DMA IDLE Control: This bit value determines whether
DMA_IDLE mode is enabled or disable.
0 = Normal operation 1 = Entering DMA_IDLE mode

0

CS [5:3] Clock Select: This field determines frequency of system clock.
000 = MCLK / 16 001 = MCLK / 8
010 = MCLK / 2 011 = MCLK
100 = MCLK / 1024

000

GIE [6] Global Interrupt Enable: This bit control to enable or disable
the interrupt
0 = No requested 1 = Requested

0

S3C3410X RISC MICROPROCESSOR REAL TIME CLOCK

16-1

16 RTC (REAL TIME CLOCK)

OVERVIEW

The RTC(Real Time Clock) unit can be operated by the backup battery although the system power is turned off.
The RTC can transmit 8-bit data to CPU as BCD(Binary Coded Decimal) values using STRB/LDRB ARM
operation. The data include second, minute, hour, date, day, month, and year. The RTC unit works with an
external 32.768KHz crystal and also can perform the alarm function

FEATURE

• BCD number: second, minute, hour, date, day, month, year

• Leap year generator

• Alarm function: alarm interrupt.

• Year 2000 problem is removed.

• Independent power pin (RTCVDD)

• RTC Time interrupt (SEC/MIN/HOUR)

REAL TIME CLOCK OPERATION

SYSTEM BUS

EXTAL1

XTAL1
OSC & Frequency

Division Logic

SEC MIN HOUR DAY DATE MON YEAR

RTCCON Alarm Generator

Leap Year Generator

INT_RTCT

INT_RTCA

Figure 16-1. Real Time Clock Block Diagram

REAL TIME CLOCK S3C3410X RISC MICROPROCESSOR

16-2

LEAP YEAR GENERATOR

This block can determine whether the last date of each month is 28, 29, 30, or 31, based on data from BCDDAY,
BCDMON, and BCDYEAR. This block can also consider the leap year in deciding the last date. An 8-bit counter
can only represent 2 BCD digits, so it cannot decide whether 00 year is a leap year or not. For example, it can not
discriminate between 1900 and 2000. To solve this problem, the RTC block in S3C3410X has hard-wired logic to
support the leap year in 2000. Please note 1900 is not leap year while 2000 is leap year. Therefore, two digits of
00 in S3C3410X denote 2000, not 1900.

SAFE READ OF SEC, MIN, HOUR, DAY, MONTH, AND YEAR

It is required to set bit 0 of the RTCCON register to read and write the register in RTC block. To display the sec.,
min., hour, day, month, and year, the CPU should read the data in BCDSEC, BCDMIN, BCDHOUR, BCDDAY,
BCDDATE, BCDMON, and BCDYEAR register in RTC block. But, there may be one second deviation because of
multiple register read. For example, when user read registers from BCDYEAR to BCDMIN register, we assume
that the result was 1959(Year), 12(Month), 31(Date), 23(Hour) and 59(Minute). When user read BCDSEC
register, if the result is value from 1 to 59(Second), there is no problem. But, if the result is 0 sec., there will be
possibility for year, month, data, hour, and minute to be changed into 1960(Year), 1(Month), 1(Date), 0(Hour) and
0(Minute) because of one second deviation as above-mentioned. In this case, user should read from BCDYEAR
to BCDSEC again if BCDSEC is zero.

BACKUP BATTERY OPERATION

The RTC logic can be driven by the backup battery, which supplies the power through the RTCVDD pin into RTC
block, even if the system power is off. In this case of power-off, the interfaces of the CPU and RTC logic should
be blocked and the backup battery only drives the oscillation circuit and the BCD counters to minimize power
dissipation.

ALARM FUNCTION

The RTC can generate an alarm signal at a specified time in the power down mode or normal operation mode. In
normal operation mode, the alarm interrupt (INT_RTCA) is activated. The RTC alarm register, RTCALM, can
determine the alarm enable/disable and the condition of the alarm time setting.

RTC TIMER INTERRUPT OPERATION

The RTC generates an time interrupt at each sec/minute/hour/day in normal operation mode. In normal operation
mode, the RTC time interrupt (INT_RTCT) is activated. The RTC time interrupt control register, RINTCON,
determines the RTC time (SEC/MIN/HOUR/DAY) interrupt enable.

S3C3410X RISC MICROPROCESSOR REAL TIME CLOCK

16-3

REAL TIME CLOCK SPECIAL REGISTERS

REAL TIME CLOCK CONTROL REGISTER (RTCCON)

The RTCCON register consists of 4 bits such as RTCEN which controls the read/write enable of the BCD
registers, CLKSEL, CNTSEL, and CLKRST for testing.

RTCEN bit can control all interfaces between the CPU and the RTC, so it should be set to 1 in an RTC control
routine to enable data read/write after a system reset. Also before power off, the RTCEN bit should be cleared to
0 to prevent an inadvertent writing into RTC registers.

Register Offset
Address

R/W Description Reset
Value

RTCCON 0xa013 R/W RTC control register 0x0

RTCCON Bit Description Initial State

RTCEN [0] RTC read/write enable
0 = Disable, 1 = Enable

0

CLKSEL [1] BCD clock select
0 = XTAL 1/215 divided clock
1 = Reserved (XTAL clock)

0

CNTSEL [2] BCD count select
0 = Merge BCD counters
1 = Reserved (Separate BCD counters)

0

CLKRST [3] RTC clock count reset
0 = No reset, 1 = Reset

0

REAL TIME CLOCK S3C3410X RISC MICROPROCESSOR

16-4

RTC ALARM CONTROL REGISTER (RTCALM)

RTCALM register can determine the alarm enable/disable and the alarm time. Note that the RTCALM register
can generate the alarm signal through INT_RTCA.

Register Offset
Address

R/W Description Reset
Value

RTCALM 0xa012 R/W RTC alarm control register 0x0

RTCALM Bit Description Initial State

SECEN [0] Second alarm enable
0 = Disable, 1 = Enable

0

MINEN [1] Minute alarm enable
0 = Disable, 1 = Enable

0

HOUREN [2] Hour alarm enable
0 = Disable, 1 = Enable

0

DAYEN [3] Day alarm enable
0 = Disable, 1 = Enable

0

MONREN [4] Month alarm enable
0 = Disable, 1 = Enable

0

YEAREN [5] Year alarm enable
0 = Disable, 1 = Enable

0

ALMEN [6] Alarm global enable
0 = Disable, 1 = Enable

0

S3C3410X RISC MICROPROCESSOR REAL TIME CLOCK

16-5

ALARM SECOND DATA REGISTER (ALMSEC)

Register Offset
Address

R/W Description Reset
Value

ALMSEC 0xa033 R/W Alarm second data register 0x59

ALMSEC Bit Description Initial State

SECDATA [6:4] BCD value for alarm second
from 0 to 5

101

[3:0] from 0 to 9 1001

ALARM MIN DATA REGISTER (ALMMIN)

Register Offset
Address

R/W Description Reset
Value

ALMMIN 0xa032 R/W Alarm minute data register 0x59

ALMMIN Bit Description Initial State

MINDATA [6:4] BCD value for alarm minute
from 0 to 5

101

[3:0] from 0 to 9 1001

ALARM HOUR DATA REGISTER (ALMHOUR)

Register Offset
Address

R/W Description Reset
Value

ALMHOUR 0xa031 R/W Alarm hour data register 0x23

ALMHOUR Bit Description Initial State

HOURDATA [5:4] BCD value for alarm hour
from 0 to 2

10

[3:0] from 0 to 9 0011

REAL TIME CLOCK S3C3410X RISC MICROPROCESSOR

16-6

ALARM DAY DATA REGISTER (ALMDAY)

Register Offset
Address

R/W Description Reset
Value

ALMDAY 0xa037 R/W Alarm day data register 0x31

ALMDAY Bit Description Initial State

DAYDATA [5:4] BCD value for alarm day, from 0 to 28, 29, 30, 31
from 0 to 3 11

[3:0] from 0 to 9 0001

ALARM MON DATA REGISTER (ALMMON)

Register Offset
Address

R/W Description Reset
Value

ALMMON 0xa036 R/W Alarm month data register 0x12

ALMMON Bit Description Initial State

MONDATA [4] BCD value for alarm month
from 0 to 1 1

[3:0] from 0 to 9 0010

ALARM YEAR DATA REGISTER (ALMYEAR)

Register Offset
Address

R/W Description Reset
Value

ALMYEAR 0xa035 R/W Alarm year data register 0x99

ALMYEAR Bit Description Initial State

YEARDATA [7:0] BCD value for year
from 00 to 99

0x99

S3C3410X RISC MICROPROCESSOR REAL TIME CLOCK

16-7

BCD SECOND REGISTER (BCDSEC)

Register Offset
Address

R/W Description Reset
Value

BCDSEC 0xa023 R/W BCD second register Undef.

BCDSEC Bit Description Initial State

SECDATA [6:4] BCD value for second
from 0 to 5

–

[3:0] from 0 to 9 –

BCD MINUTE REGISTER (BCDMIN)

Register Offset
Address

R/W Description Reset
Value

BCDMIN 0xa022 R/W BCD minute register Undef.

BCDMIN Bit Description Initial State

MINDATA [6:4] BCD value for minute
from 0 to 5

–

[3:0] from 0 to 9 –

BCD HOUR REGISTER (BCDHOUR)

Register Offset
Address

R/W Description Reset
Value

BCDHOUR 0xa021 R/W BCD hour register Undef.

BCDHOUR Bit Description Initial State

HOURDATA [5:4] BCD value for hour
from 0 to 2

–

[3:0] from 0 to 9 –

REAL TIME CLOCK S3C3410X RISC MICROPROCESSOR

16-8

BCD DAY REGISTER (BCDDAY)

Register Offset
Address

R/W Description Reset
Value

BCDDAY 0xa027 R/W BCD day register Undef.

BCDDAY Bit Description Initial State

DAYDATA [5:4] BCD value for hour
from 0 to 3

–

[3:0] from 0 to 9 –

BCD DATE REGISTER (BCDDATE)

Register Offset
Address

R/W Description Reset
Value

BCDDATE 0xa020 R/W BCD date register Undef.

BCDDATE Bit Description Initial State

DATEDATA [2:0] BCD value for date
from 1 to 7

–

BCD MONTH REGISTER (BCDMON)

Register Offset
Address

R/W Description Reset
Value

BCDMON 0xa026 R/W BCD month register Undef.

BCDMON Bit Description Initial State

MONDATA [4] BCD value for month
from 0 to 1

–

[3:0] from 0 to 9 –

S3C3410X RISC MICROPROCESSOR REAL TIME CLOCK

16-9

BCD YEAR REGISTER (BCDYEAR)

Register Offset
Address

R/W Description Reset
Value

BCDYEAR 0xa025 R/W BCD year register Undef.

BCDMON Bit Description Initial State

YEARDATA [7:0] BCD value for year
from 00 to 99

–

REAL TIME CLOCK S3C3410X RISC MICROPROCESSOR

16-10

RTC TIME INTERRUPT PENDING REGISTER (RINTPND)

Register Offset
Address

R/W Description Reset
Value

RINTPND 0xa010 R/W RTC Time interrupt pending register 0x0

RINTPND Bit Description Initial State

INT_SEC [0] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = RTC SEC interrupt is pending

0

INT_MIN [1] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = RTC MIN interrupt is pending

0

INT_HOUR [2] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = RTC HOUR interrupt is pending

0

INT_DAY [3] 0 = No interrupt pending
0 = Clear interrupt pending condition (when write)
1 = RTC DAY interrupt is pending

0

RTC TIME INTERRUPT CONTROL REGISTER (RINTCON)

Register Offset
Address

R/W Description Reset
Value

RINTCON 0xa011 R/W RTC Time interrupt control register 0x0

RINTCON Bit Description Initial State

INT_SEC [0] Setting RTC Time interrupt enable of SEC
0 = Disable 1 = Enable

0

INT_MIN [1] Setting RTC Time interrupt enable of MIN
0 = Disable 1 = Enable

0

INT_HOUR [2] Setting RTC Time interrupt enable of HOUR
0 = Disable 1 = Enable

0

INT_DAY [3] Setting RTC Time interrupt enable of DAY
0 = Disable 1 = Enable

0

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

17-1

17 ELECTRICAL DATA

ABSOLUTE MAXIMUM RATINGS

Table 17-1. Absolute Maximum Rating

Symbol Parameter Rating Unit

VDD DC Supply Voltage – 0.3 to 3.8 V

VIN DC Input Voltage – 0.3 to VDD + 0.3 V

IIN DC Input Current ± 10 mA

TA Operating Temperature 0 to 70 oC

TSTG Storage Temperature – 40 to 125 oC

RTCVDD Battery Voltage for RTC 2.5 to VDD V

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

17-2

D.C. ELECTRICAL CHARACTERISTICS

Table 17-2. DC Electrical Characteristics

(VDD = 3.3 ± 0.3V, TA = 0 to 70 oC)

Symbol Parameters Conditions Min Type Max Unit
VIH High level input voltage V

LVCMOS Interface 2.0

Schmitt-trigger Interface 2.3

RESET VDD × 0.8

XTAL, EXTAL VDD – 0.3

VIL Low level input voltage V

LVCMOS Interface 0.8

Schmitt-trigger Interface 0.8

RESET VDD × 0.2

XTAL, EXTAL 0.4

VT Switching threshold LVCMOS 1.4 V

VT+ Schmitt trigger, positive-going
threshold

LVCOMS 2.3 V

VT- Schmitt trigger, negative-going
threshold

LVCMOS 0.8 V

IIH High level input current uA

Input buffer VIN = VDD –10 10

Input buffer with pull-up 10 60 90

IIL Low level input current uA

Input buffer VIN = VSS –10 10

Input buffer with pull-up –90 -60 –10

VOH High level output voltage V

Type B4, B8 (1) IOH = -1 uA VDD – 0.05

Type B4 IOH = -4 mA 2.4

Type B8 IOH = -8 mA 2.4

VOL Low level output voltage V

Type B4, B8 (1) IOH = 1 uA 0.05

Type B4 IOH = 4 mA 0.4

Type B8 IOH = 8 mA 0.4

IOZ Tri-state output leakage current VOUT=VSS or VDD –10 10 uA

IOS Output short circuit current VDD=3.6V, VO=VDD 210 mA

VDD=3.6V, VO=VSS –170 mA

CIN Input capacitance (2) Any Input and bi-
directional buffers

4 pF

COUT Output capacitance (2) Any Output buffer 4 pF

NOTES:
1. Type B4 means 4mA output driver cell, and Type B8 means 8mA output driver cells.
2. This value excludes package parasitic.

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

17-3

Typical Quiescent Supply Current on VDD @ Normal Mode

• Test Condition 1 : Cache off, Write buffer off, and ROM access

10 MHz 20 MHz 30MHz 40MHz

3.0 V 9.06 16.52 23.62 32.96

3.3 V 10.40 18.72 27.38 37.46

3.6 V 11.80 20.96 31.06 42.24

• Test Condition 2 : Cache on, Write buffer on, and cache hit operation at SDRAM interface

10 MHz 20 MHz 30MHz 40MHz

3.0 V 14.74 27.12 39.68 54.24

3.3 V 16.72 30.66 45.58 61.54

3.6 V 18.90 34.38 51.42 69.18

• Test Condition 3 : Cache on, Write buffer on, and DMA transfer(SDRAM to SDRAM, Half-word transfer mode)

10 MHz 20 MHz 30MHz 40MHz

3.0 V 22.0 42.0 62.0 84.0

3.3 V 25.0 47.0 70.0 94.0

3.6 V 28.0 53.0 79.0 104.0

Typical Quiescent Supply Current on VDD @ IDLE Mode

10 MHz 20 MHz 30MHz 40MHz

3.0 V 3.26 4.78 6.16 9.64

3.3 V 3.94 5.54 7.78 11.30

3.6 V 4.62 6.44 9.28 13.14

Typical Quiescent Supply Current on VDD @ STOP Mode

10 MHz 20 MHz 30MHz 40MHz

3.0 V 14 uA

3.3 V 15 uA

3.6 V 16 uA

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

17-4

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
0

10

20

30

40

50

Spec. Guaranteed Area

Figure 17-1. Typical Operating Voltage Range

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

17-5

A.C. ELECTRICAL CHARACTERISTICS

tXTALCYC

1/2 VDD 1/2 VDD

Figure 17-2. EXTAL0 Clock Timing

tSCLKDLY

Xin
(EXTAL0)

SCLK

Figure 17-3. Xin(EXTAL0)/SCLK Timing

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

17-6

tWBED

tRDStRDS

SCLK

A[23:0]

nCS

nOE

nWBE

tAD

tCSD

tOED

tWBED

DATA
(Write)

DATA
(Read)

tAD

tCSD

tOED

tRDH

tWDD

tRDH

tWED

nWE

tWED

Figure 17-4. ROM/SRAM Bus Timing

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

17-7

SCLK

A[23:0]

nRAS

nOE/
nWBE0

tDRASD

tOED/tWED

DATA
(Write)

DATA
(Read)

tDAD

tDRASD

tOED/tWED

tPDRDH tPDRDH

nCAS

tDCASD

tDAD tDAD

tDCASDtDCASD tDCASD

DATA
(Read)

tEDRDH tEDRDH

tDWDDtDWDDtDWDD

Figure 17-5. DRAM (Fast Page/EDO) Bus Timing

SCLK

nRAS

nCAS

tDRASD

tDCASD

tDRASD

tDCASD

Figure 17-6. DRAM CBR Refresh Timing

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

17-8

Da Db Dc Dd De

Ca Cb Cc Cd CeRA

RA

BA BA BA BA BABABA

SCLK

SCKE

nSCS

nSRAS

nSCAS

ADDR

BA

A10/AP

nWE

DATA
(CL=2)

DQM

tSCSD

tRASD

tCASD

tSAD

tBAD

tAPD

tSDWED

tDQMD

tSDRHtSDWD

Figure 17-7. SDRAM Bus Timing (Single Write and Burst Read)

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

17-9

SCLK

nDREQ

nDACK

tDREQH

tDACKD

Figure 17-8. External DMA Timing

IICSCL

IICSDA

tSTOPH tBUF tSTARTS tSDAS tSDAH

tSCLHIGH tSCLLOW

tSCL

Figure 17-9. IIC Interface Timing

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

17-10

Table 17-3. Clock Timing

(VDD = 3.3 ± 0.3V, TA = 0 to 70 oC, Operating Frequency = 40 MHz)

Parameter Symbol Min Typ Max Unit

Crystal clock input frequency fXTAL 40 MHz

Crystal clock input cycle time tXTALCYC 25 ns

Xin to SCLK delay time tSCLKDLY 17.2 ns

Table 17-4. DMA Controller Timing

(VDD = 3.3 ± 0.3V, TA = 0 to 70 oC, Operating Frequency = 40 MHz)

Parameter Symbol Min Typ Max Unit

nDREQ hold time tDREQS 4.46 ns

nDACk delay time tDACKD 2.62 ns

Table 17-5. IIC Interface Timing

(VDD = 3.3 ± 0.3V, TA = 0 to 70 oC, Operating Frequency = 40 MHz)

Parameter Symbol Min Typ Max Unit

SCL high level pulse width 100 KHz tSCLHIGH 4.0 us

400 KHz 0.6

SCL low level pulse width 100 KHz tSCLLOW 4.7 us

400 KHz 1.3

Bus free time 100 KHz tBUF 4.7 us

between STOP and START 400 KHz 1.3

START hold time 100 KHz tSTAH 4.0 us

400 KHz 0.6

SDA hold time 100 KHz tSDAH 0 us

400 KHz 0 0.9

SDA setup time 100 KHz tSDAS 250 ns

400 KHz 100

STOP hold time 100 KHz tSTOS 4.7 us

400 KHz 0.6

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

17-11

Table 17-6. Memory Interface Timing

(VDD = 3.3 ± 0.3V, TA = 0 to 70 oC, Operating Frequency = 40 MHz)

Parameter Symbol Min Typ Max Unit

ROM/SRAM address delay time tAD 13.41 ns

ROM/SRAM chip select delay time tCSD 10.87 ns

ROM/SRAM read enable delay time tOED 10.44 ns

ROM/SRAM write enable delay time tWED 12.83 ns

ROM/SRAM write byte enable delay time tWBED 12.50 ns

ROM/SRAM read data setup time tRDS 5.14 ns

ROM/SRAM read data hold time tRDH 0 ns

ROM/SRAM write data delay time tWDD 14.30 ns

DRAM column address delay time tDCAD 12.03 ns

DRAM row address delay time tDRAD 11.28 ns

DRAM RAS delay time tDRASD 11.76 ns

DRAM CAS delay time tDCASD 12.40 ns

DRAM read enable delay time tDOED 10.37 ns

DRAM write enable delay time tDWED 12.02 ns

DRAM(FP) read data hold time tPDRDH 2.18 ns

DRAM(EDO) read data hold time tEDRDH 2.79 ns

DRAM write data delay time tDWDD 11.23 ns

SDRAM chip select delay time tSCSD 16.25 ns

SDRAM SRAS delay time tRASD 14.89 ns

SDRAM SCAS delay time tCASD 15.00 ns

SDRAM address delay time tSAD 13.27 ns

SDRAM bank address delay time tBAD 13.14 ns

SDRAM A10 address delay time tAPD 13.20 ns

SDRAM data write delay time tSDWD 14.30 ns

SDRAM data read hold time tSDRH 0 ns

SDRAM write enable delay time tSDWED 14.83 ns

SDRAM DQM delay time tDQMD 14.48 ns

SDRAM SCKE delay time tSCKED 14.59 ns

nWAIT setup time tWAIT 10 ns

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

17-12

NOTES

S3C3410X RISC MICROPROCESSOR MECHANICAL DATA

18-1

18 MECHANICAL DATA

OVERVIEW

The S3C3410X is available in a 128-QFP-1420 package.

128-QFP-1420

#128

20.00 ± 0.20

22.00 ± 0.30

14
.0

0
±

 0
.2

0

16
.0

0
±

 0
.3

0

0.15
+ 0.10
- 0.05

0-8

0.10 MAX

#1

NOTE: Dimensions are in millimeters.

(0.75)

0.
50

 ±
 0

.2
0

0.05 MIN

2.10 ± 0.10

2.40 MAX

0.50 ± 0.20

0.50

0.20
+ 0.10
- 0.05

(0
.7

5)

0.10 MAX

0.10 MAX

Figure 18-1. 128-QFP-1420 Package Dimensions

MECHANICAL DATA S3C3410X RISC MICROPROCESSOR

18-2

NOTES

